

Lecture Notes in Computer Science 4531
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jadwiga Indulska Kerry Raymond (Eds.)

Distributed
Applications and
Interoperable Systems

7th IFIP WG 6.1 International Conference, DAIS 2007
Paphos, Cyprus, June 6-8, 2007
Proceedings

13

Volume Editors

Jadwiga Indulska
School of Information Technology and Electrical Engineering
The University of Queensland
St. Lucia, QLD 4072, Australia
E-mail: jaga@itee.uq.edu.au

Kerry Raymond
Faculty of Information Technology
Queensland University of Technology
126 Margaret Street, Brisbane QLD 4001, Australia
E-mail: k.raymond@qut.edu.au

Library of Congress Control Number: 2007927413

CR Subject Classification (1998): D.2, C.2.4, I.2.11, D.4, H.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-72881-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72881-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

©IFIP International Federation for Information Processing 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12072446 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the Seventh IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Systems (DAIS 2007)
held in Paphos, Cyprus, June, 6-8, 2007. Distributed applications and inter-
operable systems have become an integral part of everyday living, part of the
socio-economic ecosystem of our human environment. With such interdepen-
dence between society and software, distributed software applications must be
sustainable and adaptable in the long term, despite the changes in our environ-
ment. Therefore, the theme of DAIS 2007 was ”Towards Sustainability” and the
papers of DAIS2007 addressed the following questions:

– How do we ensure our distributed applications can make local adaptation to
specific circumstances of their deployment?

– How do we make our interoperable systems evolvable in the face of widespread
change in their environment?

– How do we integrate distributed software within the wider fabric of comput-
ing within our modern world?

The conference program presented research contributions in context-awareness,
adaptation, mobility, distributed applications and peer-to-peer computing, all of
which relate to the sustainability of distributed applications and integrated sys-
tems. This year, the technical program of DAIS drew from 97 submitted papers,
accepting 24 papers. Each accepted paper was reviewed (as a full paper) by at
least three reviewers, coordinated by our International Program Committee.

The DAIS 2007 conference was again sponsored by IFIP (International Fed-
eration for Information Processing) and it was the seventh conference in the
DAIS series of events organized by the IFIP Working Group 6.1. DAIS 2007 was
part of the federated conference DisCoTec (Distributed Computing Techniques),
together with the Ninth International Conference on Coordination Models and
Languages (COORDINATION) and the Ninth IFIP International Conference on
Formal Methods for Open Object-Based Distributed Systems (FMOODS).

We would like to take this opportunity to thank the numerous people whose
work made this conference possible. We wish to express our deepest gratitude
to the authors of submitted papers, to all Program Committee members and
external reviewers for their participation in the paper review process, to Ricky
Robinson for publicity, to the DAIS Steering Committee for their advice, to the
University of Cyprus for hosting DisCoTec, and to George Angelos Papadopoulos
for acting as General Chair of DisCoTec.

June 2007 Jadwiga Indulska
Kerry Raymond

Conference Committees and Organization

Chairs

Steering Committee Lea Kutvonen, University of Helsinki, Finland
Elie Najm, ENST, Paris, France
Hartmut König, BTU Cottbus, Germany
Kurt Geihs, University of Kassel, Germany

General Chair George Angelos Papadopoulos, University of Cyprus
Program Co-chairs Jadwiga Indulska, University of Queensland, Australia

Kerry Raymond, Queensland University of
Technology, Australia

Publicity Chair Ricky Robinson, NICTA, Australia

Sponsoring Institutions

University of Cyprus
IFIP WG 6.1

Program Committee

N. Alonistioti University of Athens, Greece
D. Bakken Washington State University, USA
Y. Berbers Katholieke Universiteit Leuven, Belgium
A. Beugnard ENST-Bretagne, France
G. Blair Lancaster University, UK
I. Demeure ENST, France
C. Eckert TU Darmstadt, Germany
F. Eliassen University of Oslo, Norway
P. Felber Université de Neuchâtel, Switzerland
K. Geihs University of Kassel, Germany
R. Grønmo SINTEF ICT, Norway
D. Hagimont INP Toulouse, France
S. Hallsteinsen SINTEF ICT, Norway
J. Indulska University of Queensland, Australia
H. König BTU Cottbus, Germany
R. Kröger University of Applied Sciences Wiesbaden, Germany
L. Kutvonen University of Helsinki, Finland
W. Lamersdorf University of Hamburg, Germany
M. Lawley Queensland University of Technology, Australia
P. Linington University of Kent at Canterbury, UK

VIII Organization

C. Linnhof-Popien University of Munich, Germany
K. Lund Norwegian Defence Research Establishment (FFI),

Norway
R. Meier Trinity College Dublin, Ireland
L. Merakos University of Athens, Greece
A. Montresor University of Trento, Italy
E. Najm ENST, France
R. Oliveira Universidade do Minho, Portugal
A. Puder State University San Francisco, USA
K. Raymond Queensland University of Technology, Australia
R. Robinson National ICT Australia, Australia
A. Schill Technical University of Dresden, Germany
T. Senivongse Chulalongkorn University, Thailand
K. Sere Abo Akademi University, Finland
J.B. Stefani INRIA, France
E. Tanter University Santiago de Chile, Chile
K. Zieliński AGH University of Science and Technology, Poland

Additional Referees

M. Alia C.P. Kunze M. Schiely
S. Arteconi A. Küpper M. Schmid
D. Bade F. Liu S. Serbu
A. Beloued R. Löfman G. Simon
S. Bouchenak C. Lohr E. Stav
G. Brataas N. Lopes M. Strassberger
L. Braubach J. Martens H. Sturzrehm
P.-C. David L. Martin J. Sudeikat
F. Degerlund P.H. Meland G. Treu
H.H. Duong P. Moen R. Vila ca
J. Fabry J.-C. Moissinac M. Wagner
J. Floch M. Morel T. Weise
P. Floréen M. Neovius D. Weiss
C. Funk A. Opitz L. Wienhofen
B. Girma J. Pereira L. Yan
E. Gjørven A. Pokahr M. Zapf
K. Henricksen D. Preuveneers S. Zaplata
M.U. Khan R. Rouvoy

Table of Contents

Context-Awareness I

The Context-Dependent Role Model . 1
Jorge Vallejos, Peter Ebraert, Brecht Desmet, Tom Van Cutsem,
Stijn Mostinckx, and Pascal Costanza

Integrating Facts and Beliefs to Model and Reason About Context 17
Waltenegus Dargie and Thomas Springer

Situation Specification and Realization in Rule-Based Context-Aware
Applications . 32

Patŕıcia Dockhorn Costa, João Paulo A. Almeida,
Lúıs Ferreira Pires, and Marten van Sinderen

Distributed Applications I

Observability and Controllability of Wireless Software Components 48
Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

Service Level Agreement Management in Federated Virtual
Organizations . 62

Tuomas Nurmela and Lea Kutvonen

Adaptation I

Construction and Execution of Adaptable Applications Using an
Aspect-Oriented and Model Driven Approach . 76

Sten A. Lundesgaard, Arnor Solberg, Jon Oldevik, Robert France,
Jan Øyvind Aagedal, and Frank Eliassen

Component Adaptation in Contemporary Execution Environments 90
Susan Eisenbach, Chris Sadler, and Dominic Wong

Managing Distributed Adaptation of Mobile Applications 104
Mourad Alia, Svein Hallsteinsen, Nearchos Paspallis, and
Frank Eliassen

Peer-to-Peer

DOLCLAN – Middleware Support for Peer-to-Peer Distributed Shared
Objects . 119

Jakob E. Bardram and Martin Mogensen

X Table of Contents

Peer-to-Peer Based QoS Registry Architecture for Web Services 133
Fei Li, Fangchun Yang, Kai Shuang, and Sen Su

Mobility I

Migration in CORBA Component Model . 139
Jacek Ca�la

A Serialisation Based Approach for Processes Strong Mobility 153
Soumaya Marzouk, Maher Ben Jemaa, and Mohamed Jmaiel

Parallel State Transfer in Object Replication Systems 167
Rüdiger Kapitza, Thomas Zeman, Franz J. Hauck, and
Hans P. Reiser

Distributed Applications II

MARS: An Agent-Based Recommender System for the Semantic
Web . 181

Salvatore Garruzzo, Domenico Rosaci, and Giuseppe M.L. Sarné

An HTML Fragments Based Approach for Portlet Interoperability 195
Jingyu Song, Jun Wei, and Shuchao Wan

Context-Awareness II

Scalable Processing of Context Information with COSMOS 210
Denis Conan, Romain Rouvoy, and Lionel Seinturier

Experiences from Developing a Distributed Context Management
System for Enabling Adaptivity . 225

Nearchos Paspallis, Avraam Chimaris, and George A. Papadopoulos

Towards Context-Aware Web Applications . 239
Po-Hao Chang and Gul Agha

Adaptation II

A Flexible Architecture for Enforcing and Composing Policies in a
Service-Oriented Environment . 253

Tom Goovaerts, Bart De Win, and Wouter Joosen

Managing Concern Interactions in Middleware . 267
Frans Sanen, Eddy Truyen, and Wouter Joosen

An Improved Genetic Algorithm for Web Services Selection 284
Sen Su, Chengwen Zhang, and Junliang Chen

Table of Contents XI

Mobility II

A UML Profile for Modeling Mobile Information Systems 296
Vegard Dehlen and Jan Øyvind Aagedal

A Planning Method for Component Placement in Smart Item
Environments Using Heuristic Search . 309

Jürgen Anke, Bernhard Wolf, Gregor Hackenbroich, and
Klaus Kabitzsch

A Generic Infrastructure for Decentralised Dynamic Loading of
Platform-Specific Code . 323

Rüdiger Kapitza, Holger Schmidt, Udo Bartlang, and Franz J. Hauck

Author Index . 337

The Context-Dependent Role Model

Jorge Vallejos, Peter Ebraert�, Brecht Desmet,
Tom Van Cutsem��, Stijn Mostinckx�, and Pascal Costanza� � �

Programming Technology Lab – Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussels - Belgium

{jvallejo, pebraert, bdesmet, tvcutsem,
smostinc, pascal.costanza}@vub.ac.be

Abstract. Implementing context-dependent behaviour of pervasive
computing applications puts a great burden on programmers: Devices
need to continuously adapt not only to their own context, but also to
the context of other devices they interact with. We present an approach
that modularises behavioural adaptations into roles. Role selection takes
the context of all the devices involved in an interaction into account,
ensures an unambiguous scope of adaptation even in the presence of
concurrency, and protects the privacy of the devices. Thus, our context-
dependent role (CDR) model facilitates expressing interactions between
applications in different, possibly conflicting contexts.

1 Introduction

Context-awareness is commonly defined as the ability of an application to per-
ceive and dynamically adapt its behaviour to the surrounding environment [20].
This definition, however, only seems halfway correct, especially in the presence
of distribution. Context-dependent adaptations have particular effects on the in-
teractions between devices, and thus are more difficult to coordinate in pervasive
computing systems.

Consider the scenario of the context-aware cellphone, in which a person at-
tending an important meeting does not want to be disturbed by incoming calls.
Therefore, his cellphone should, for example, automatically signal incoming calls
in a discreet way only. The definition of context-awareness given above suffices
for this scenario since the cellphone may adapt its behaviour based on informa-
tion inferred from its surroundings by means of sensors, like the user’s location.
However, assume further that this person has a relative who is currently in the
hospital, and that he wants to be sure that he does not miss any call from the
hospital although he is in an important meeting. The issue here is that he may
not know what is the phone number or even the identity of the person who

� Author funded by a doctoral scholarship of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

�� Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.O.).
� � � Author funded by the Institute for the Promotion of Innovation through Science

and Technology in Flanders (IWT-Vlaanderen).

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 1–16, 2007.
c© IFIP International Federation for Information Processing 2007

2 J. Vallejos et al.

would call him from the hospital. In this case, his cellphone cannot derive the
necessary information to decide the kind of signal required for such a special call.
The only information it can actually rely on is found in the context of the calling
device, which is the fact that the call originates from the hospital. Conversely, if
the adaptation were decided at the calling device, it would not only inhibit the
callee’s ability to discern the calls he wants to receive. It would probably even
conflict with the requirements at the callee’s phone, as the caller may not, and
probably should not, be aware of the callee’s context.

The scenario above reveals the problems of distribution for context-dependent
adaptations. First, the behavioural adaptation of a device (i.e. signalling calls
loud or discreetly) may not only depend on its own context (i.e. “user is in
meeting room”) but also on the context of all the participants of an interaction
(i.e. “call originates from the hospital”). Second, different interactions require
adaptations that do not necessarily fit together, such as the different call signals
in the cellphone (i.e. loud and discreet signals cannot be combined). Last but
not least, external decisions of adaptations can be more vulnerable to context
changes and hamper the privacy of the devices.

We propose a role-based object-oriented programming model, called the
context-dependent role (CDR) model, to facilitate the development of context-
dependent adaptations in mobile distributed systems. In this model, (1) roles
represent the different behavioural adaptations a software application can dy-
namically adopt according to the context, (2) an application autonomously de-
cides on an appropriate role based on the context of all the participants, and (3)
an adaptation is strictly delimited by the scope of an interaction.

We validate the CDR model by implementing it as an extension to Ambi-
entTalk [16], a programming language especially designed for pervasive com-
puting applications. We use this extension for implementing the scenario of the
context-aware cellphone described above.

2 Context-Dependent Adaptations in Mobile Distributed
Systems

We now briefly discuss the main properties of context-dependent adaptations in
pervasive computing environments to later introduce the specific requirements of
distribution for such adaptations. We derive these requirements from the analysis
of the scenario of the context-aware cellphone.

Since we focus on context-dependent adaptations in this paper, we do not
explicitly deal with the context acquisition, i.e. the way in which software sys-
tems obtain information from their surroundings. We rather assume that every
application has the necessary support to derive unambiguous context informa-
tion from potentially unreliable low-level sensor data, like the Context Toolkit
framework [24]. We also require that all participants in a mobile distributed sys-
tem agree on a common representation of the particular context information of
interest, like for example the ontology introduced in [22].

The Context-Dependent Role Model 3

2.1 Context-Dependent Adaptations

A context-aware application has to be able to deal with dynamic changes that
often lack any periodicity or predictability. The presence of unexpected context
changes may lead us to additionally presume that adaptations have to be applied
at arbitrary unanticipated points in time. However, adaptations do not neces-
sarily have to happen right after a context change. The context-aware cellphone,
for instance, needs to adapt signalling calls only when receiving an incoming
call, not necessarily when the user enters the meeting room. This means that an
adaptation has a delimited scope of action: The adaptation is only required for
a specific operation (e.g. a method execution in an object-oriented system) and
thus its impact can be limited to the execution of this operation.

In most cases, a context-dependent adaptation affects only parts of the pro-
gram. The example of the context-aware cellphone illustrates this partial adap-
tation of behaviour: The adaptation required in this scenario involves exclusively
the signals for incoming calls, but leaves other functionality intact. An important
requirement for using partial adaptations is that the resulting behaviour of the
application should be a consistent composition of its default behaviour and the
adaptations.

The dependency of the application behaviour on its context does not imply
that the code required to reason about the context should get entangled with the
rest of the application program. Reasoning about the context inside of the pro-
gram would lead to undesirable situations such as scattered context-dependent
if-statements, resulting in cluttered code that is hard to maintain [12]. Context-
dependent adaptations, as well as the reasoning process that they require, should
be modularised to avoid their entanglement and scattering in the program.

To summarise, context-dependent adaptations:

– occur dynamically, with arbitrary frequency, and within a delimited
scope of action.

– generally affect only part of the program. In this case a consistent com-
position with the rest of the program should be ensured.

– should be modularised in such a way that they do not get entangled with
the base program.

2.2 Distribution Conditions for Context-Dependent Adaptations

In this section, we analyse the implications for context-dependent adaptations
of the distributed nature of pervasive computing environments.

Multiple Influence of Context. The context is not a monolithic and homoge-
neous set of information for all the participants of a pervasive computing system.
It can vary with time and from one device to another. This variability implies
that applications might be interacting with others in completely different con-
texts. The question concerning our focus on context-dependent adaptations is
thus how this context heterogeneity may influence the behavioural adaptations
of such applications. In the scenario of the context-aware cellphone, for instance,

4 J. Vallejos et al.

we observe that the behavioural adaptation on the user’s cellphone is not only
influenced by its location, but also by the location of the calling device.

Conflicting Adaptations. The problem of conflicting adaptations stems from
applications that may be involved in several interactions with different remote
applications at the same time. Since presumably these interactions require also
different adaptations, there is a high probability that applications end up with
adaptations that conflict with each other. The context-aware cellphone, for ex-
ample, cannot adopt two different call signals at the same time, even if the
signals are the appropriate adaptations for two different incoming calls. Part of
this problem is directly related to the natural concurrency of the mobile devices.
Therefore, adaptations must be circumscribed to a delimited scope of action that
is unambiguous even in the presence of concurrent interactions.

Privacy Issues. In a distributed system, the decision whether and how to
adapt its components can be made at different physical locations. In pervasive
computing systems, however, this condition may raise privacy issues. A context-
dependent adaptation decided in a different device from the one affected by the
adaptation is neither always possible nor always desirable for the users of mobile
devices. In the scenario of the context-aware cellphone, for instance, if the caller
could decide that the callee’s cellphone should be switched to loud signalling
mode, the person at the meeting would lose the possibility to discern the calls
he wants to receive.

The same argument can be used to rule out centralised adaptation and de-
cision schemes, developed to coordinate the adaptations of collaborative appli-
cations [11,9]. If such a cooperation scheme is required, it should also take into
account the privacy of each device involved in a common task. We call this the
non-intrusiveness principle.

Summary. The distribution requirements for context-dependent adaptations
introduced in this section are listed below.

– The behavioural adaptation of an application may depend on multiple con-
texts, especially in the case of interactions with other applications.

– Context-dependent adaptations should be circumscribed to a delimited
scope of action, in a way that is consistent with concurrency to avoid
conflicting adaptations.

– Context-dependent adaptations should comply with the non-intrusiveness
principle to preserve the privacy of mobile applications. This principle is also
valid for cooperation schemes of adaptations.

To the best of our knowledge, no existing middleware or programming lan-
guage offers a solution to deal with all of the properties and which satisfies all
distribution requirements for context-dependent adaptations presented in this
section. We further discuss the related work in Section 5.

The Context-Dependent Role Model 5

3 The Context-Dependent Role (CDR) Model

To address the requirements discussed in the previous section, we now intro-
duce the CDR model for context-dependent adaptations in mobile distributed
systems. It extends the actor model [1] of concurrency and distribution with the
notion of context-dependent roles. In this section, we describe the semantics for
creating, selecting, and adopting context-dependent roles.

We use the context-aware cellphone application identified in this paper to
illustrate the different components of our model. We implement this application
in AmbientTalk [16], an actor-based programming language especially designed
for pervasive computing in which we have developed our model. For the sake
of conciseness, we do not present an in-depth discussion of AmbientTalk itself.
Instead, we introduce specific features as necessary in the course of this section
and refer the reader to dedicated publications [14,15] for more information about
this language.

3.1 Flexible Composition of Behavioural Adaptations

In the CDR model, a context-aware application is represented as an actor whose
behaviour encapsulates the default functionality of the application and all of its
context-dependent adaptations. The default behaviour and the adaptations are
modelled as objects and organised in a delegation hierarchy. Such a hierarchical
delegation structure, originally presented in [21], enables the adaptations to ex-
tend the default behaviour of the application – placed at the root of the hierarchy
– or any other more general adaptation situated higher up the delegation tree.
Figure 1 shows the behaviour of the actor that implements the context-aware
cellphone application, specifically its feature to receive incoming calls.

In a delegation hierarchy, an object can either override or share behaviour
with its parent. This is especially beneficial for modelling partial adaptations.
In the context-aware cellphone, for instance, the loud and discreet adaptation
objects each have a specialised implementation of the signal method, while
they share the behaviour of the call method, which is defined in the default

signal()

family

general

signal()

signal()

friends

signal()

loud discreet

forwarder

signal() signal()

notifier

as(loud) signal()

call(n)
signal()

Fig. 1. Context-dependent behaviour of the cellphone actor

6 J. Vallejos et al.

behaviour (the general object). At the same time, the delegation semantics
ensures a consistent interaction between objects that delegate to each other [21].
The following listing presents a definition of the behaviour of the context-aware
cellphone actor:

contextCellphone: contextActor({
general: object({

signal():: {
playTone("normal-tone")

};
playTone(tone):: {...};
blinkLights():: {...};
...

});
loud: extend(general,{

signal():: {
playTone("noisy-tone");
blinkLights()}

});
discreet: extend(general,{

signal():: {blinkLights()}
});
...

})

Different from normal AmbientTalk actors, whose behaviour is represented by
a unique object, actors in our model (created using the dedicated contextActor
construct) contain multiple behaviour objects. In the code above, the adaptations
of the cellphone actor are represented by the discreet and loud objects which
extend the general object, overriding the signal method.

3.2 Dynamic Adaptation Based on Roles

In the CDR model, the behaviour objects cannot receive messages directly be-
cause these objects correspond to the internal state of an actor and, as such,
they should only be accessed by the actor. Instead, actors receive messages and
respond to them by first selecting the appropriate role and then executing the
corresponding method in the adaptation object of that role. The adaptation re-
quired by a role-specific message not only involves the object that denotes this
role, but also its delegation chain. In the context-aware cellphone, for example,
if the loud role is specified in an incoming message, the application will respond
according to the delegation chain composed of the loud and general objects
(marked by the dotted line in Figure 1).

3.3 Context-Dependent Role Selection

The selection of which role an actor has to adopt to respond to a message is a
decision made autonomously by the actor receiving the message but based on
the context of both the message sender and receiver. This means that the sender
must not indicate the role required for the message execution but rather passes
part of its own context information along with the message. The part of the
context included in the message is autonomously chosen by the message sending

The Context-Dependent Role Model 7

Sender's device

signal()

family

general

signal()

call(n)
signal()

signal()

friends

signal()
loud discreet

forwarder

signal() signal()

notifier

Receiver's device

Context-dependent
behaviour of the actor

Sender actor

as(loud) signal()with(<loc:hospital>) signal()

Context-dependent role
selector

"sender is in hospital" "receiver is in meeting-room"

Rules

Fig. 2. Context-dependent role selection

actor (discussed later in Section 3.5). Figure 2 illustrates the context-dependent
role selection process in the scenario of the context-aware cellphone.

The role selection process is supported by a dedicated entity within the actor,
called the context-dependent role selector. This role selector is a logic reasoning
engine that takes as input the context information of the sender and receiver,
together with programmer-defined rules that describe under which conditions
a given role can be selected for an incoming message. The output, then, corre-
sponds to the message provided with the role that is most appropriate for the
context conditions.

The advantage of designing the role selector as a logic engine is that it offers
the developer the expressiveness of the logic programming paradigm. Using a
logic programming language, the developer can declaratively specify when a
role is applicable, rather than having to specify imperatively when roles become
active or inactive by tracking changes in the context.

The rules that the role selector uses to decide on a role have the following
structure:

role aRole for receiver, message if
condition1 & ... & conditionN

The role selector chooses the role indicated in the head of a rule only if all
its conditions are accomplished. The information that these conditions require is
retrieved from the logic variables receiver and message, which are bound to the
receiver actor and the message respectively. For instance, we add the following
rule to the definition of the context-aware cellphone actor presented in Section
3.1 (by using the addRule primitive), indicating that this actor should adopt the
discreet role when it is at the meeting room:

contextCellphone: contextActor({
general: object({ ... });
discreet: extend(general,{ ... });
...
// Don’t signal calls at the meeting room.
addRule({role discreet for receiver, message if

receiver.getContext("location") = "meeting-room"})
})

8 J. Vallejos et al.

There can be cases where more than one rule matches the context conditions
of the receiver and the message that was sent. It means that several roles could
be adopted for the same message execution. In our model, however, actors can
adopt only one role at the same time, and for this reason, the rules in the context-
dependent role selector have a priority order. Only the role that corresponds to
the rule with the highest priority is returned as a result. This is the way, for
instance, in which the context-aware cellphone application can determine that,
although it is in the meeting room, the calls from the hospital should be signalled
loudly. In this case, the programmer should add an extra rule for such a new
condition with a higher priority than the rule about the receiver in the meeting
room described above. The new rule looks as follows:

// Signal the calls from the hospital loud.
addRule({role loud for receiver, message if

message.getContext("location") = "hospital"});

In the current implementation of the CDR model, the priority of the rules is
determined by the order in which they are defined in the actor, as in the Prolog
logic programming language (in Section 4, we propose some alternatives to this
basic way of defining priorities). Conversely, it could be that none of the rules
matches the current sender’s and receiver’s context. For this specific case we have
defined a default rule without any condition that returns the role corresponding
to the default behaviour of the application (the general role).

3.4 Delimited Scope of Adaptations

A behavioural adaptation is delimited by the scope of the execution of a message,
which means that an actor adopts the role indicated in a message exclusively
to process that message. This delimited scope is ensured by the asynchronous
message passing mechanism of actors [2] which explicitly separates the message
reception from the message execution by using a message queue. This separation
enables the actor to adapt its behaviour to individual messages without the risk
of affecting or being affected by the adaptations required for other message exe-
cutions. This separation also enables actors to include the context-dependent role
selection as an extra step between the reception and the execution of a message.
Figure 3 illustrates the actor with all its components: the context-dependent
behaviour, the context-dependent role selector, and the message queue.

Within the scope of the message execution, we can find other information in
addition to the sender and receiver’s contexts. The receiver’s state and the mes-
sage itself are also part of the context of the communication and hence they can
also be used in the definition of the rules and the methods. For instance, assume
that the user in the meeting room wants to send back an explanation about why
he is not answering the call to all the callers that have an entry in his address
book. We define a caller to be a buddy if the caller corresponds to an entry in
the user’s address book. So then the rule would also be implemented in terms

The Context-Dependent Role Model 9

Sender's device

with(<loc:hospital>) signal()signal()

Context
reference

getContext("location")

signal()

family

general

signal()

call(n)
signal()

signal()

friends

signal()
loud discreet

forwarder

signal() signal()

notifier

Receiver's device

Context-dependent behaviour

as(loud) signal()

Context-dependent
role selector

Message
queue

Rules

Receiver actorSender actor

Rules

Fig. 3. The implementation of the CDR model in AmbientTalk

of the “inAddressBook” method. The implementation of such a requirement in
the actor is as follows:

contextCellphone: contextActor({
...
notifier:: extend(discreet,{

signal():: {
buddy: getContact(thisMessage.getContext("name"));
// Send the explanation in a text message.
buddy<-receiveText("I’m in a meeting until 11:30");
// Use the signal method defined in the discreet role
// (the parent of this role).
super.signal()}

});

// Notify only to my buddies that I am in a meeting.
addRule({role notifier for receiver, message if

receiver.getContext("location") = "meeting-room" &
senderName: message.getContext("name") &
receiver.inAddressBook(senderName)});

...
})

We benefit from the visibility of the information contained in the message
(accessed via the pseudovariable thisMessage) in the implementation of the
notifier role to reply to the message.

3.5 Context Selection

The CDR model preserves the privacy of the receiver actor by allowing it to
autonomously decide its adaptations. To also protect the privacy of the message
sender we should enable this actor to autonomously select the context that it
sends to the message receiver. We introduce context references for this purpose.
A context reference is a dedicated proxy for a remote actor, whose main respon-
sibility is to get sender’s context information and include it in the message sent
to the remote actor. Figure 3 illustrates the place of the context reference in the
interaction between the two context-aware cellphone applications.

10 J. Vallejos et al.

The following listing shows the use of a context reference in the implementa-
tion of the context-aware cellphone application, now at the calling device:

contextCellphone: contextActor({
general: object({

addressBook : makeHashmap();
addContact(nickname,visibleCtx):: {

addressBook.put(nickname,makeContextRef(nickname, visibleCtx))
};
callContact(nickname):: {

buddy: getContact(nickname);
buddy<-signal()

};
... };

... })

A context reference is defined using the makeContextRef construct. Its de-
finition comprises the identification of the remote actor1 (represented by the
nickname of the cellphone’s user in our example), and the context accessible for
the reference. Similar to the context-dependent role selector presented in Sec-
tion 3.3, a context reference enables developers to declaratively specify the part
of the context that will be sent to the remote actor. Using the implementation
above, for instance, the cellphone’s user can add a contact to his address book
and reveal his location only during working hours, as follows:

contextCellphone<-addContact("Tom",
{addRule({send location of sender if

time: sender.getContext("time") &
time > 8.00 & time < 17.00})})

The information that the conditions of the rules for the context reference re-
quire, is retrieved from the logic variable sender which is bound to the sender
actor2. These rules are evaluated each time the sender actor sends a message
through the context reference. The context reference takes into account the con-
text information indicated in the head of all the rules that accomplish their
conditions. If none of the rules succeeds, the context reference does not add any
context information to the message.

Another benefit of the context references is that they enable the sender actor
to abstract from the passing of the context required in the CDR model. This
means that programmers do not have to manually include the context informa-
tion whenever they send messages (e.g. see the signal message sent inside the
call method). The inclusion of the context information occurs transparently in
the context reference. At the same time, a context reference is a central place
for configuring what context information to expose to the remote actor.

4 Discussion and Future Work

In summary, in the CDR model: an actor encapsulates a delegation hierarchy
composed of a default behaviour and its different context-dependent adaptations,

1 In AmbientTalk such identification corresponds to an intensional description of
the service provided by the actor in terms of its properties [16].

2 We do not consider the receiver for these rules at this stage. In Section 4, we
discuss some extensions to this context selection process.

The Context-Dependent Role Model 11

all of them represented as roles; actors respond to messages by first selecting the
appropriate role and then executing the corresponding method in the adap-
tation object of that role; the role required for the execution of a message is
autonomously selected by the actor that receives the message, using the context-
dependent role selector and based on the context of both the sender and receiver
of the message; adaptations have a delimited scope of action which is defined by
the execution of a message; and a context reference enables the message sender
to be aware of the part of the context exposed to the message receiver.

This model accomplishes the properties of context-dependent adaptations
identified in Section 2.1 as follows:

Dynamic adaptations. Dynamic adaptations of behaviour occur transpar-
ently for the programmer as a result of the selection of a context-dependent
role. This role indicates the behavioural adaptation (object) to which the
actor has to address the message.

Delimited scope. Behavioural adaptations are only active within the scope of
a message execution. This means that an actor only adopts a certain role to
process a single message.

Consistent composition. The composition of behavioural adaptations is de-
fined by the delegation hierarchy. This hierarchy is a flexible structure in
which the adaptations can specialise and consistently share behaviour.

Modularisation. Behavioural adaptations in this model are modular since they
are encapsulated in objects whose only interaction with the other adaptations
is regulated by the semantics of the delegation mechanism. The context
reasoning is also concentrated in a single entity called the context-dependent
role selector.

The CDR model also copes with the distribution requirements presented in
Section 2.2:

Multiple context influence. This model takes the context of all the entities
involved in a common task explicitly into account. The execution of a mes-
sage does not only depend on the application that receives the message (its
context and state), but also on the context information of the message sender
that is passed along with the message.

Delimited scope and concurrency. Actors communicate by asynchronous
message passing which enables them to adapt their behaviour to a message
without conflicting with other interactions.

Non-intrusiveness. An actor autonomously decides on the role that it will
adopt to process a certain incoming message. This decision is made by its
context-dependent role selector. The actor that sends the message also de-
cides autonomously the context information that is passed along with the
message.

Although the CDR model can help in tackling some of the challenges for
context-dependent adaptations faced in pervasive computing, a number of chal-
lenging issues needs to be further explored. For instance, in this model the default

12 J. Vallejos et al.

behaviour of a context-aware application is represented as a single object. We
are currently investigating an extension to this model that enables programmers
to also deal with application behaviours composed of multiple objects. The roles
of an application, in this case, do not represent the adaptations of one object but
rather modules of adaptations for several objects. The essence of these modules
of adaptation can be found in the notions of class families in CaesarJ [3], class-
boxes [6], or layers in ContextL [12]. So far, none of these approaches provide
support to deal with pervasive computing systems.

In this paper, we illustrate the benefits of delimiting the scope of an adaptation
to the execution of one message. We are currently also investigating how the
adaptation scope needs to be propagated in case of having interactions that
involve more than one message.

We also propose in this work the use of a delegation hierarchy to model com-
positions of context-dependent adaptations. In this structure, the adaptations
have a predefined location which gives clarity to the behaviour composition, but
at the same time restricts the possibilities of adaptations to those denoted by
the delegation chains in the hierarchy. A possible alternative to this delegation
hierarchy is to have a set of unwired behavioural adaptations, similar to mixins
[8] or traits [26], which can be dynamically composed whenever they are used.

In the logic reasoning process of context-dependent role selection, we need
to ensure that only one role is chosen. For this reason, we establish priorities
between the rules that in the current implementation of the CDR model rely on
their order of definition. We are currently exploring Choice Logic [29], Ordered
Logic [19] and dynamic preferences in Extended Logic programming [10], as more
expressive and dynamic ways of defining priorities.

In the CDR model, we define context references as the entities that centralise
the context selection process at the message sender’s device. A context reference
decides the part of the context that is sent to the message receiver based on the
sender’s context conditions. We are currently working on an extension that also
considers the message receiver in the context selection process, e.g. to reason
about the context conditions of the receiver or to enable it to prompt the sender
for specific pieces of context.

Finally, we are exploring different ways of optimising the logic reasoning
process required in the CDR model (context and role selection). We investi-
gate some techniques for caching information [18] and therefore avoiding the
recalculation of the role in every message reception.

5 Related Work

Context-Aware Frameworks. There is a huge amount of research on frame-
works that support the development and deployment of context-aware systems
like WildCAT [13], ContextToolkit [25] or Java Context Awareness Framework
[5]. The aim of these frameworks is to provide a generic programming infrastruc-
ture that deals with common functionalities like uniform interfaces to access sen-
sor data, event-based system to signal context changes, and reasoning mechanism
to aggregate context information. Context-aware frameworks are useful for both

The Context-Dependent Role Model 13

pro-active and reactive systems. In the former case, callback methods are used,
as part of an event-driven system, to automatically invoke some behaviour in
response to relevant context changes. Additionally, framework solutions also pro-
vide the ability to query for actual context information such that reactive systems
can adopt their behaviour accordingly. Developers have to rely on traditional dis-
patching constructs like conditional statements or polymorphism to establish the
behavioural adaptation. As soon as context-dependent behaviour appears to be
the rule rather than the exception, these language constructs become unman-
ageable. We therefore argue that context-aware frameworks and our role-based
model are actually complementary. Whereas the framework solutions provide
the required functionalities to develop context-aware systems, our role-based
programming model focuses on how context-dependent adaptations can be de-
cently modelled inside of software systems. The synergy between both proposals
supports the development of pervasive systems.

The CORTEX [27] is a middleware architecture that exploits the sentient
object paradigm: so-called sentient objects receive events as input (from other
sentient objects or sensors), process the events by means of an inference en-
gine and generate further events as output. The communication between sen-
tient objects happens asynchronously via an event layer which hides the
network and the transformation process of real-world events. Although our model
incorporates concepts that also appear in CORTEX, like asynchronous com-
munication and a reasoning system, both approaches address different applica-
tion domains. The sentient object model of CORTEX is intended for pro-active
context-aware systems that autonomously invoke some action in response to rel-
evant context changes. In contrast, our model deals with reactive systems. That
is, upon the reception of a message, the behaviour of the most appropriate role is
executed.

Actors in Open Distributed and Pervasive Systems. There exists a num-
ber of research proposals that extend the actor model to address the software
development issues found in open distributed and pervasive environments. Al-
though so far these approaches do not directly deal with context-dependent be-
havioural adaptations, some of their coordination and adaptation mechanisms
may be useful for developing context-aware applications. SALSA [28], for in-
stance, is an actor-based programming language designed for internet and grid
computing. This language enables application’s adaptation by means of reflec-
tion. The basic operations of the actors (communication and message processing)
can be freely manipulated at the meta-level of SALSA. These reflective capa-
bilities are mainly used to fulfil a set of default policies like resource profiling,
secure communication and coordination, but new policies can also be defined.

ARC [23] is a role-based coordination model for open, distributed and embed-
ded systems. This model also uses a meta-level but in this case to map quality
of service (QoS) requirements to coordination constraints. These constraints are
transparently imposed to the actors through message manipulation. Unlike roles
in the CDR model, roles in the ARC model are totally independent entities
(meta-actors) that provide abstractions for actor functional behaviours and that

14 J. Vallejos et al.

can be shared by multiple actors. The local coordination between actors is con-
ducted by the roles whereas the distributed coordination is conducted by other
meta-actors called coordinators.

Models of Composition and Conditional Selection of Behaviour. The
CDR model also shares a number of properties with some object models of com-
position and conditional behaviour selection. Split objects [4] is a programming
model that uses the delegation mechanism of prototype-based languages for role
modelling. Similar to an actor in the CDR model, a split object encapsulates a
collection of objects structured in a delegation hierarchy that hold part of the
description of the split object (state and behaviour) and represent the different
roles the split object can adopt to respond to a message. The difference with the
actor is that the split object does require that the messages sent to it indicate a
role. This means that the split object cannot autonomously decide its adaptation
which contradicts the non-intrusiveness principle defined in Section 2.2.

Composition filters [7] is a composition model that enables programmers to
modify the behaviour of object-based components through the manipulation of
incoming and outgoing messages. As in the CDR model, object behaviours are
fully encapsulated, and the behavioural adaptations are exclusively performed
inside the component (by using filters).

Predicate dispatching [17] generalises a diversity of method dispatching pro-
posals into a unified theory of dispatch. This is established by permitting arbi-
trary predicates to control the applicability of methods. The authors paid special
attention to static typechecking to ensure that there always exists a single most-
specific method. Our model can be regarded as a specific application of predicate
dispatch in which predicates are associated with roles.

6 Conclusion

Within the domain of pervasive computing, we focus on the capacity of soft-
ware applications to adapt to their dynamically reconfigurable environments.
We describe a number of properties for context-dependent adaptations and then
establish some specific requirements of distribution for such adaptations, derived
from the analysis of a concrete scenario of context-aware cellphone applications.
We observe that context-dependent adaptations occur dynamically and within a
delimited scope of action. In addition, these adaptations should be consistently
combined with the default behaviour of the application, and clearly modularised
to avoid the entanglement between the adaptations and the application behav-
iour. To cope with the effects of distribution on context-dependent adaptations,
an adaptation should take into account the context of all the applications in-
volved in an interaction, have an unambiguous scope of action even in the pres-
ence of concurrent interactions, and finally protect the privacy of the interacting
applications.

The Context-Dependent Role Model 15

In this paper, we propose the context-dependent model to deal with the prop-
erties and distribution requirements described above. In this model, context-
aware applications are represented as actors provided with a set of behavioural
adaptations organised in a delegation hierarchy. Each adaptation is represented
as a role that an actor can adopt to respond to a message. The actor au-
tonomously selects a role for each message based on the context of the message
sender and receiver. The context information of the sender that is used for this
selection, is passed along with the message and is also autonomously chosen by
the sender.

Currently, we are investigating different extensions of our model, like increas-
ing the units of adaptations, making more flexible composition structures of
adaptations, propagating the adaptation scope for multiple-actor interactions,
and enhancing the expressiveness and efficiency of the context and role selection
process.

References

1. Agha, G.: Actors: a Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Agha, G., Hewitt, C.: Concurrent programming using actors. Object-oriented con-
current programming, pp. 37–53 (1987)

3. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: Overview of caesarj. In:
Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Develop-
ment I. LNCS, vol. 3880, pp. 135–173. Springer, Heidelberg (2006)

4. Bardou, D., Dony, C.: Split objects: a disciplined use of delegation within ob-
jects. In: Proceedings of the 11th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pp. 122–137. ACM Press,
New York (1996)

5. Bardram, J.E.: The java context awareness framework (jcaf) - a service infrastruc-
ture and programming framework for context-aware applications. In: Pervasive,
pp. 98–115 (2005)

6. Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Classboxes: controlling visibility
of class extensions. Computer Languages, Systems and Structures 31(3-4), pp. 107–
126 (2004)

7. Bergmans, L.: The composition filters object model. Technical report, Dept. of
Computer Science, University of Twente (1994)

8. Bracha, G., Cook, W.: Mixin-based inheritance. In: Meyrowitz, N. (ed.) Proceed-
ings of the Conference on Object-Oriented Programming: Systems, Languages, and
Applications / Proceedings of the European Conference on Object-Oriented Pro-
gramming, pp. 303–311, ACM Press, Ottawa, Canada (1990)

9. Brewer, E.A., Katz, R.H., Amir, E., Balakrishnan, H., Chawathe, Y., Fox, A.,
Gribble, S.D., Hodes, T., Nguyen, G., Padmanabhan, V.N., Stemm, M., Seshan,S.,
Henderson, T.: A network architecture for heterogeneous mobile computing. Per-
sonal Communications, IEEE (1998)

10. Brewka, G.: Well-founded semantics for extended logic programs with dynamic
preferences. Journal of Artificial Intelligence Research 4, 19 (1996)

11. Correa, C.D., Marsic, I.: A flexible architecture to support awareness in heteroge-
neous collaborative environments. In: Fourth International Symposium on Collab-
orative Technologies and Systems (CTS 2003), pp. 109–116 (November 2003)

16 J. Vallejos et al.

12. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented program-
ming - An overview of ContextL. In: Dynamic Languages Symposium (2005)

13. David, P.-C., Ledoux, T.: Wildcat: a generic framework for context-aware applica-
tions. In: MPAC ’05. Proceedings of the 3rd international workshop on Middleware
for pervasive and ad-hoc computing, pp. 1–7. ACM Press, New York (2005)

14. Dedecker, J.: Ambient-Oriented Programming. PhD thesis, Vrije Universiteit
Brussel (2006)

15. Dedecker, J., Van Belle, W.: Actors for Mobile Ad-hoc Networks. In: International
Conference on Embedded and Ubiquitous Computing EUC2004 (2004)

16. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.: Ambient-
Oriented Programming in Ambienttalk. In: Proceedings of the 20th European Con-
ference on Object-Oriented Programming (ECOOP) Nantes, France (2006)

17. Ernst, M.D., Kaplan, C.S., Chambers, C.: Predicate dispatching: A unified theory
of dispatch. In: ECOOP ’98, the 12th European Conference on Object-Oriented
Programming, pp. 186–211, Brussels, Belgium (July 20-24, 1998)

18. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19, 17–37 (1982)

19. Gabbay, D., Laenens, E., Vermeir, D.: Credulous vs. sceptical semantics for or-
dered logic programs. In: Kaufmann, M. (ed.) Second International Conference on
Principles of Knowledge Representation and Reasoning, pp. 208–217 (1991)

20. I.A. Group. Ambient intelligence: from vision to reality (September 2003)
21. Lieberman, H.: Using prototypical objects to implement shared behavior in object-

oriented systems. In: Conference proceedings on Object-oriented Programming Sys-
tems, Languages and Applications, pp. 214–223. ACM Press, New York (1986)

22. Preuveneers,D.,VandenBergh, J.,Wagelaar,D.,Georges,A.,Rigole,P.,Clerckx,T.,
Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible con-
text ontology for ambient intelligence. In: Ambient Intelligence, pp. 148–159 (2004)

23. Ren, S., Yu, Y., Chen, N., Marth, K., Poirot, P.-E., Shen, L.: Actors, roles and
coordinators - a coordination model for open distributed and embedded systems.
In: COORDINATION, pp. 247–265 (2006)

24. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of
context-enabled applications. In: A. Press (ed.) CHI 99: Proceedings of the SIGCHI
conference on Humon factors in computing systems, pp. 434–441. New York, USA
(1999)

25. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of
context-enabled applications. In: CHI ’99. Proceedings of the SIGCHI conference
on Human factors in computing systems, pp. 434–441. ACM Press, New York
(1999)

26. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of
behavior. In: ECOOP 2003 – Object-Oriented Programming, LNCS, vol. 2743,
pp. 248–274, Springer, Heidelberg (2003)

27. Sørensen, C.-F., Wu, M., Sivaharan, T., Blair, G.S., Okanda, P., Friday, A., Duran-
Limon, H.: A context-aware middleware for applications in mobile ad hoc environ-
ments. In: MPAC ’04. Proceedings of the 2nd workshop on Middleware for pervasive
and ad-hoc computing, pp. 107–110. ACM Press, New York (2004)

28. Varela, C.A., Agha, G.: A hierarchical model for coordination of concurrent activi-
ties. In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594,
pp. 166–182. Springer, Heidelberg (1999)

29. Vos, M.D., Vermeir, D.: Choice logic programs and nash equilibria in strate-
gic games. In: Flum, J., Rodriguez-Artalejo, M. (eds.) Computer Science Logic,
vol. 1683, pp. 266–276. Springer, Heidelberg (1999)

Integrating Facts and Beliefs to Model and

Reason About Context

Waltenegus Dargie and Thomas Springer

TU Dresden, Institute for Systems Architecture, Computer Networks Group,
Helmholtzstrasse 10, 01062 Dresden, Germany

{waltenegus.dargie, thomas.springer}@tu-dresden.de

Abstract. This paper presents a twofold context modelling approach
that integrates beliefs (uncertain knowledge) and facts to reason about
various everyday situations. Awareness of everyday situations enables
mobile devices to adapt to the social and conceptual settings in which
they operate; it also enables resources which share a similar context to
cooperate in order to carry out a distributed task on behalf of their user.
Our context modelling process involves the identification of the context
of interest, the determination of those aspects of a context which can be
captured by employing sensors, the determination of contextual states
for each aspect, and finally, the determination of logical and probabilis-
tic relationships between the contextual aspects and the context they
represent. We demonstrate our approach by modelling physical places.
Data from various heterogeneous sensors build our system’s belief, while
containment relationships build its factual knowledge regarding places.
The system utilises its belief and factual knowledge to reason about the
whereabouts of a mobile user.

1 Introduction

Human beings are apt to adapt to their surrounding by perceiving what is taking
place around them and by relating the perceived change in their surrounding
with their expectations and experiences. As he laid out his vision for ubiquitous
computing, Weiser asserted that the idea first arose from ”contemplating the
place of today’s computer in actual activities of everyday life. In particular,
anthropological studies of work life teach us that people primarily work in a
world of shared situations and unexamined technological skills [14].”

For example, when people attend a meeting, their eyes communicate to convey
agreements or disagreements to what is said or unsaid; voices are whispered to
exchange impromptu opinions; facial expressions reveal to the other participants
fatigue, boredom, or disinterest. More importantly, speeches may not be gram-
matically correct or complete. Previous as well as unfolding incidents enable the
participants to capture what cannot be expressed verbally. Speakers shift from
one language to another and use words with multiple meanings, and still the
other participants can follow.

Flexibility and adaptation is possible because the social and conceptual set-
ting (i.e., the context) encompassing the interaction is effortlessly recognised by

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 17–31, 2007.
c© IFIP International Federation for Information Processing 2007

18 W. Dargie and T. Springer

all participants. As a result, within the perceived context, many activities unfold,
some of which are unpremeditated, yet consistent with the context, while other
activities express the freedom associated with the recognition of the context - for
example, using incomplete or incorrect statements, or using words with multiple
meanings. Still other activities reflect the participants’ adjustment of behav-
iour in compliance with the context of the setting - for example, participants
whispering to exchange impromptu ideas.

Capturing a context of interest and representing it in a meaningful way has
been and still is the main focus of context-aware computing. The research com-
munity has approached this task from different perspectives. For example, Schilit
et al. [12], Dey et al. [5], and Pasco [9] offer conceptual frameworks in which
the different components required for context acquisition are proposed and ex-
plained. The various subtasks the components carry out represent a context at
different levels of abstraction. Additional subtasks include discovery services and
context storage. While their work identify the essential aspects of context com-
puting, it offers little insight as to how the actual task of context recognition is
carried out.

Gellersen et al. [6] offers a layered, conceptual architecture for context recog-
nition which includes a sensor layer, a cue layer and a context layer. The sensor
layer is responsible for obtaining raw data from physical sensors; the cue layer
is responsible for obtaining meaningful features; the context layer is responsi-
ble for obtaining a context of interest by interpreting the relationship between
several cues. Schmidt et al. [11] demonstrate the usefulness of the conceptual
architecture by capturing various everyday contexts such as the state of a smart
cup and the activity of a smart mobile phone.

While the conceptual approach proposed by Gellersen et al. is the basis of
our work, we aim at complementing a context recognition task with a context
modelling task. Subsequently, we proposes a context modelling and reasoning
guideline for presenting the real-world to computers wholly, conceptually, and
meaningfully. Our approach permits the integration of facts and beliefs regarding
entities (people, places, device, etc.) which are useful for computing a context as
a representation of a dynamic real-world situation. We will demonstrate that it
is possible to compute a context even though only a subpart of its aspects can
be captured by employing sensors, and even if it may not be possible to foresee
which of these aspects can be captured at a given time.

The rest of this paper is organized as follows: in section 2 we discuss challenges
associated with a context computing task; in section 3 we discuss related work; in
section 4 we introduce our approach, and illustrate its implementation. Finally,
in section 5 we will close the paper with a discussion and concluding remarks.

2 Aspects of Context Computing

Capturing a context as a representation of a conceptual or a social setting is
not a straightforward achievement. Firstly, because conceptual and social set-
tings are difficult to directly capture by employing sensor alone, a context as an

Integrating Facts and Beliefs to Model and Reason About Context 19

abstraction of these settings is not explicitly available. Data have to be gath-
ered from heterogeneous sources in a seamless fashion, desirable features should
be extracted from the data, and a reasoning operation has to be performed.
A context data source may abstract any type of sensor, framework, database,
user input, or application. As far as a context is concerned, these data can be
classified as factual or approximated data [4].

While factual data remain unchanged regardless of repeated observations of
a given phenomenon, approximated data are modelled as beliefs, since different
or repeated observations of the same phenomenon under similar circumstances
may result in disparity. An example for the former is the profile of a user or a
device in a database. Another example is the status of a device or an application:
on, off or idle; an example for the latter is the thermal or acoustic property of
a room. Secondly, a concomitant effect associated with approximated data is
uncertainty – most physical sensors have different technical specifications and
may be affected by environmental conditions differently. Thirdly, in a pervasive
computing environment, the availability of sensing devices is dynamic; sensors
may come and go over time, i.e., one may not be able to foresee what sensors can
be employed for a given sensing task. In the literature, this problem is addressed
by separating the concern of context acquisition from the context consumption,
since applications are interested in the context they employ rather than in its
acquisition process [5]. This, however, does not warrant the constant availability
of a mechanism for capturing a certain contextual aspect at all time. Therefore, a
context computing process should involve learning about new contextual aspects
which are not foreseen previously but could provide indirect evidence about a
situation of interest.

Finally, data fusion and recognition operations for manipulating sensed data
entail assumptions and incomplete knowledge (world models), producing addi-
tional uncertainty. To minimise the effect of this, a context computing process
should entail dynamic belief revision and update of models.

3 Related Work

Early research in context-aware computing focused on implementing specific
applications. Based on the experiences learned, more generic solutions were de-
veloped introducing different levels of abstraction for gathering, interpreting,
deriving and aggregating a context (refer, for example, Schmidt et al. [11] and
Salber et al. [10]. The approach described in Schmidt et al. outlines a four layered
approach to capture and process a context in order to drive higher-level situ-
ational information. Hence, sensors data are first transformed into predefined
cues, and cues are processed by logical rules to determine the current situation
of an application.

More recent approaches focus on the creation of comprehensive and generic
models of a context to facilitate interoperability and context reuse. Henricksen
et al. [7] employ ORM (Object Role Modelling) to model a context as an asso-
ciation of fact types and roles. Fact types represent physical objects while roles

20 W. Dargie and T. Springer

represent dependencies between them. The model enables the representation of
a context as a fact type the property of which can be static, sensed, profiled,
derived, or alternative; an alternative property signifies the potential presence
of several (possibly contradictory) reports about a particular attribute. An in-
teresting aspect of the modelling concept is the recognition of a context as a
dynamic construct.

The model of Crowley et al. [3] consists of three basic elements of a dynamic
real world situation: entities, roles, and relations. An entity is an association of
correlated observable variables corresponding to a physical object; a relation is
a predicate function describing the properties of entities; and a role is a poten-
tial set of actions within a task; where a task is defined to be the association
of a current state and a goal state. Coutaz et al. [2] propose a conceptual ar-
chitecture which manipulates the model proposed by Crowley et al. in order to
reason about the context of a mobile user. The architecture consists of a sensing
layer, a perceptual layer, a situation and context identification layer, and an ex-
ploitation layer. The sensing layer generates numeric observables; the perception
layer is responsible for providing symbolic observables at the appropriate level
of abstraction; the situation and context identification layer identifies the cur-
rent situation and context from observables. The exploitation layer serves as an
adapter between application semantics and the infrastructure, enabling applica-
tions to put declarative requests for context services. The architecture does not
prescribe to any particular algorithm or schemes; thus, it is difficult to scrutinies
the modelling concept as well as the architecture.

Chen et al. [1] propose a common context vocabulary based on a concept hi-
erarchy. The proposed COBRA-ONT ontology contains general concepts which
can be reused in the domain of pervasive computing. It models, among others,
physical locations, devices, temporal concepts and privacy policies. The reason-
ing over this information is based on the OWL ontology requiring no additional
rule framework.

Wang et al. [13] propose a hierarchical ontology consisting of upper and
domain-specific ontology. The upper ontology models basic contextual entities
while the domain-specific ontology contains domain or application related con-
cepts which are modelled on the basis of the generic concepts of the upper
ontology. They employ OWL DL for ontology representation and two additional
reasoning schemes for consistency check: DL-reasoners and logic-based rules.

The approaches above consider a context as a construct which can be captured
in its entirety. Subsequently, their usefulness is limited to model a dynamic real-
world situation with factual data only.

Korpipää et al. [8] propose a context recognition framework, describing a con-
text as an uncertain and dynamic construct. Among its most important tasks,
the framework manages uncertainty of sensed data through the use of proba-
bility based inference and fuzzy membership. They employ ontology to model
context which will be used by a nave Bayesian classifier to reason about various
real-world situations. The framework supports the computation of the model pa-
rameters from training data. Though the Bayesian classifier employed a variety of

Integrating Facts and Beliefs to Model and Reason About Context 21

contextual aspects, each was extracted from a single audio input. An additional
limitation of the framework is its employment of a nave Bayesian classifier, which
assumes the absence of causal dependencies between the input context atoms.
In most practical cases, however, this assumption may not hold true. Similarly,
Mntyjrvi et al. [16] apply k-means clustering and minimum-variance segmenta-
tion algorithms to capture the activity of a mobile user. The sensors they employ
include motion, temperature, skin conductance, and temperature sensors.

In general, the above approaches employ either factual or probabilistic inputs
to model and reason about context. We build on the experiences learned previ-
ously, but combine both factual and probabilistic aspects to tackle the problem
of uncertainty at various stages.

4 A Guideline for Modelling Everyday Situations

In section 2, we discussed the causes of uncertainty in a context computing
process. In this section, we will introduce a context modelling process which in-
tegrates facts and beliefs with the goal of reducing uncertainty. While the model
enables probabilistic reasoning schemes to deal with inaccurately captured dy-
namic aspects, the additional factual knowledge in the model makes possible
containment tests to resolve between equally probable contextual states. To mo-
tivate our approach, we give a brief scenario.

4.1 Scenario

Active monitoring is one example of an application domain where context-
awareness plays a role. In this scenario, the task is to detect the presence of
interesting entities and to determine the relationship between these entities. If
a given pattern of relationship seems to be likely to be broken or violated, the
application should take a predictive measure. A typical example of active mon-
itoring can be watching children and their behaviour towards each other in a
kindergarten. The specific task of the application may be to determine which
child is playing with whom, but it can also be to determine whether there are
children (regardless of their identity) in certain places and whether the social
atmosphere is healthy. If, for instance, the application picks up an aggressive
tone while children are playing, it should sound an alarm to avoid further esca-
lation of events. An additional example is suppose we want the application to
monitor the whereabouts of a particular child. To recognise and avoid dangerous
situations, the application should determine whether the child is inside a room,
in a corridor, or outdoors. If the child happens to be in a corridor or outdoors
by itself, i.e., if no supervisor is with it, the system should alert the responsible
supervisor; if the responsible supervisor does not respond, or if she is currently
busy with another child, the system should alert the head supervisor.

In the second scenario, the relative whereabouts of a child triggers an action,
but it may also trigger a set of actions, depending on the activity of its supervisor.
The whereabouts of the child in itself cannot be taken as a context of interest.
The same is true to the activity of the supervisor. This very well reflects the

22 W. Dargie and T. Springer

relative and relational nature of a context. Subsequently, the contexts of interest
are: the relative whereabouts of a child in reference to its supervisor and the
activity of the supervisor in reference to the whereabouts of the child.

The different aspects of a context of interest (the context model) depend on
the available sensing mechanisms. For example, there is a plethora of location
sensing mechanisms which are based on either infrared or RF or ultrasound
technologies or a combination of some of these technologies. Use of any of these
technologies makes the modeling task less of an issue compared to the actual
sensing task. If, on the other hand, there is no direct mechanism to locate a per-
son, the context of interest should be derived from other aspects which describe a
place - these could be, for example, light intensity, temperature, humidity, sound
pressure, ambient noise, etc., which provide indirect evidence about a place.

At an abstract level, the various contextual features which make up the model
are the different forms of places (room, corridor and outdoors), the relationship
of the supervisor not only with the child of interest, but also with other children,
i.e., her activity. In the next subsections, we will present our context modelling
approach step by step.

4.2 Determination of the Context of Interest

The main purpose of a context model is to describe a context of interest as
well as its various states as exhaustively and as completely as possible. Since
an interest in a context comes from applications which respond to it, the first
step in the modelling process is to identify the set of contextual states which
are relevant for a particular application. In the following subsection, we take the
whereabouts of the child as a context of interest.

4.3 Identification of Aspects of a Context

Once a context of interest is known, the next step is to identify all of its aspects
which can directly be captured by employing sensors. This decision is made based
on the requirements of the application developer or the user. For the whereabouts
of the child, the application developer may decide to employ already available
sensors which capture humidity, temperature, light intensity, etc.

At this stage, it is not necessary to determine how exactly these aspects
describe the context of interest. It is sufficient to know that some kind of rela-
tionship exists. In the next subsection, we shall demonstrate how a system can
be trained to determine (at least in part) the nature of the relationship. The ex-
istence of a relationship between a context of interest and its aspects is modelled
as an extensible factual relationship.

Figure 1 shows the major concepts and properties defining facts about per-
sons, places, sensors, and physical values which can be measured by sensors.
We use the Web Ontology Language (OWL) terminology in the model, depict-
ing relationships between the concepts by labeled arrows. For example, a sensor

Integrating Facts and Beliefs to Model and Reason About Context 23

owl:Class
Sensor

owl:Class
Physical
Value

owl:Class
Context

owl:Class
Thing

owl:Class
Locateable
Thing

owl:Class
Temperature
Sensor

owl:Class
Light
Sensor

owl:Class
Humidity
Sensor

measures

measuredBy

characterizes

characterizedBy

owl:Class
Temperature

owl:Class
Light

Intensity

owl:Class
Relative
Humidity

owl:Class
Location

locatedAt

owl:Class
Person

owl:Class
Indoor

owl:Class
Outdoor

owl:Class
Room

owl:Class
Corridor

owl:disjointWith

owl:disjointWith

owl:ObjectProperty

owl:disjointWith

owl:class

rdfs:subClassOf

owl:Class
Building

connectedVia

Fig. 1. A factual context model using the OWL terminology

measuring a certain physical property is modelled by the owl:ObjectProperty
”measures” with its domain of owl:class ”Sensor” and its range owl:class ”Phys-
icalValue”.

Relevant places are modelled as a hierarchy of location concepts. We distin-
guish between indoor and outdoor and model a building as a composition of
rooms and corridors. The concepts indoor and outdoor as well as room and cor-
ridor are modelled as disjoint concepts using the owl:disjointWidth constructor,
since they mutually exclude each other. Moreover, direct connections (such as
a door, a passage, a stair case, an elevator, etc.) between places are described
by the role ”connectedVia” and by additional roles derived from the role ”con-
nectedVia”; for example, ”connectedViaDoor”. These factual relationships will
be useful to validate a location context computed by a probabilistic reasoning
scheme (to be discussed in section 4.5).

The relations between sensors and the corresponding context are modelled
by the owl:ObjectProperty ”characterizedBy” and ”characterizes”. The concept
”Location” is described as a subclass of the ”Context” concept. At the same
time, location is characterized by the physical values temperature, light intensity,
and relative humidity. To dynamically detect and bind to available sensors, an
additional individual concept called ”Sensor” is defined.

4.4 Determination of Factual and Probabilistic States

An aspect of a context can be modelled as either a discrete aspect or a con-
tinuous random variable. A discrete aspect has enumerable values, and it can
be modelled as a factual concept, for example, the status of a device (on, off,
or idle). Those aspects which are described by continuous numerical values are
not straightforward to model. For example, the temperature of a place may be
between -5C and 37C, depending on its spatial and temporal properties as well

24 W. Dargie and T. Springer

Fig. 2. An average outdoor temperature (blue) and relative humidity (green)
measurement

as other factors such as whether a heater is turned on. Moreover, such properties
change frequently and thus two-valued assertions about them are not possible.
Numerical properties can be modelled as beliefs by transforming the continuous
values into discrete fuzzy values to imitate human reasoning. This process can
be made semi-automatic. Consider a series of quantities, x(1), x(2), ..., x(n), rep-
resenting some sensor measurements, each x(i) being independently subject to a
random variation. It is possible to define a probabilistic model for the random
process in which a set of unknown model parameters, Θ, determine the prob-
ability distributions of x(i). Such probabilities, or probability densities, will be
written in the form of P (x(i)|Θ). Learning about Θ is possible if the system has
observed the values of some of the x(i). The impact of these observations can be
captured by the likelihood function:

L(Θ) = L(Θ|x(1), x(2), ..., x(n)) (1)

Equation (1) yields the probability of the observed data as a function of the
unknown parameters, which in turn is proportional to:

P (x(1), ..., x(n)|Θ) =
n∏

i=1

P (x(i)|Θ) (2)

Figure 2 shows temperature and relative humidity readings of an outside
place for October 2006 in Dresden, Germany. To make the sensor readings more
meaningful to human consumers, we transformed them into meaningful fuzzy
sets. To compute the model’s parameters, i.e., the model’s statistical parameters,
we identify various fuzzy regions for each reading, and determine its temporal
characteristics. The regions were classified into those which exhibit constant, de-
creasing, and increasing characteristics. The time context, ceteris paribus, forces

Integrating Facts and Beliefs to Model and Reason About Context 25

the measurements to decrease or increase or to remain constant, and hence was
classified as: morning, afternoon, and noon. These regions were in turn used to
determine the fuzzy members of the temperature and humidity measurements.
For temperature, these regions were labeled as: very cold, cold, lukewarm, warm,
and hot ; for relative humidity, they were labeled as: dry, moderate, and moist.
The same process was applied for other aspects (light intensity: dark, visible,
bright, and very bright ; and sound pressure: quite, normal, loud, noisy).

Once the fuzzy regions of a given aspect for a given place were identified, the
next task is to compute the model’s parameters, P (aspect = x|place = y, time =
z); for example, for the above readings, the probability, P (temperature = luke-
warm|place = outdoor, time = noon), is equal to 0.45. The overall probability
distribution of the temperature of an outdoor place at noon is given as: {{very
cold, 0.15}, {cold, 0.35}, {lukewarm, 0.45}, {warm, 0.05}, {hot, 0.0}}. After the
model’s parameters were computed, the content of the ontology of figure 1 was
updated to reflect the newly acquired knowledge.

4.5 Determination of Logical and Probabilistic Relationships

Establishing relationship – logical or probabilistic – between the context of in-
terest and the various aspects by which it is represented is the necessary step
to determine a reasoning scheme for a context computing task. Since the con-
text model integrates both beliefs and facts, the reasoning scheme should be
able to manage beliefs and facts. In general, probabilistic schemes are suitable
for low-level context recognition, whereas logic- or rule-based reasoning schemes
can be employed for higher-level context disambiguation. This will be illustrated
shortly.

A reasoning scheme should also be able to deal with missing data as it may not
be feasible to foresee which of the aspects of a context will be captured at a given
time. This requires the reasoning schemes to deal with all possible combinations
of available sensors. For example, in the previous section we identified time,
temperature, relative humidity, light intensity and sound pressure – five aspects
– as relevant aspects of the context of interest. Provided a time context will
be available all the time – as the other aspects are influenced by it –, there are
altogether 15 different combinations of sensors if we assume a random variation of
sensors. In general, the random availability of sensors is described by equation (3)
and (4), where p refers to the number of all possible combinations; n refers
to the total number of aspects which can describe a place as accurately and
unambiguously as possible; and r refers to the aspects which can be captured
by the available sensors.

p =
n∑

r=1

n!
(n − r)!r!

(3)

For our scenario, this will be:

4∑

r=1

4!
(4 − r)!r!

= 15 (4)

26 W. Dargie and T. Springer

Fig. 3. The iButton Sensor network implementing the 1-wire protocol

5 Validation

In the previous section we illustrated by examples the four steps of a context
modelling approach. To demonstrate the expediency of this approach, we imple-
mented a system which reasons about the whereabouts of a mobile user.

We set up a 1-wire network (Figure 3) with various iButton sensor nodes
on a laptop. The sensors we employed include: a DS1971-F3 and Java powered
DS1957B data logger for storing secured profile information (the user’s name
and password to monitor which user has logged on to a device); temperature
and humidity loggers with different sensing parameters (DS1921G, DS1921Z-
F5, and DS2422, DS1923), and a light intensity data logger (PCE- 172). The
sensors have different accuracy, sensing range, and resolution. We randomly vary
the sensor nodes to simulate dynamic availability of sensors. A context provider
will receive an event notification whenever a node arrives at or departs from a
1-wire network. When a node arrives, the provider binds to it and queries it
periodically. The query interval and duration is defined by the user. The con-
text provider translates each context type into a fuzzy set to enable human-like
reasoning. The output of the context provider are supplied to a Bayesian prob-
abilistic reasoning scheme, which computes a posterior probability distribution
for all potential places – the whereabouts of a person – and determines the one
which is most likely. However, there are situations in which some places ap-
pear equally probable – for example, a corridor and a room – in which case,
the system applies containment test to avoid inconsistent reasoning and random
decision.

Figure 4, Figure 5, and Figure 6 display three different configurations of a
Bayesian network. In Figure 4, three aspects of a place are captured, namely

Integrating Facts and Beliefs to Model and Reason About Context 27

Fig. 4. A Bayesian Network with two parent nodes and two child nodes (relative hu-
midity and temperature)

time, temperature, and relative humidity which were all measured by the sen-
sors. The model’s belief for the probabilistic relationship is that place (P) and
time (t) are parent nodes and temperature (T) and relative humidity (H) are
child nodes1. The various states each node can assume are as described in
section 4.4.

When the data is obtained from the available sensors, they are mapped to
corresponding linguistic variables each of which represents a particular aspect of
a place, which is described by a fuzzy set. For example, 17C is mapped to the
linguistic variable lukewarm of a temperature fuzzy set; 45% is mapped to the
linguistic variable dry of a relative humidity fuzzy set; 1000 Lux is mapped to
the linguistic variable bright of a light intensity fuzzy set, etc.

Once the linguistic variables of each node are determined, the Bayesian Net-
work computes posterior probability for each potential place (corridor, room,
or outdoors) using equation (5), which computes the posterior probability of a
place given measurements of temperature, humidity, and time. The place with
the highest posterior probability becomes the most likely place to which the
sensed data refer.

For the case of Figure 4, the following input is an example: {time = September
15, 2005, 1:35 PM}, {temperature = 17C}, {relative humidity = 45%}. As can be
seen in equation (6), the sensed data are mapped to lukewarm (for temperature),
moderate (for relative humidity) and noon (for time).

P (P |T, H, t) =
P (T |P, t)P (H |P, t).P (P)∑
P P (H |P, t)P (T |P, t).(P))

(5)

1 Except the time context, which influences other primitive contexts and hence should
be modelled as a parent context, all primitive contexts are modelled as child nodes.
On the other hand, the higher-level context which should be inferred is modelled as
a parent node.

28 W. Dargie and T. Springer

Fig. 5. A Bayesian Network with two parent nodes and two child nodes (light intensity
and temperature)

P (P |T = lw, H = mod, t = n) =
P (T = lw|P, t = n)P (H = mod|P, t = n)P (P)

P (T = lw|P = c, t = n)P (H = mod|P = c, t = n)P (P = c)+

P (T = lw|P = r, t = n)P (H = mod|P = r, t = n)P (P = r)+

P (T = lw|P = o, t = n)P (H = mod|P = o, t = n)P (P = o)
(6)

Applying Bernoulli’s Principle of Insufficient Reason – a person can be any-
where with equal probabilities – to determine the probability distribution of
a place, the posterior probabilities yield: {corridor, 0.457}, {room, 0.44}, and
{outdoors, 0.1}. The difference in posterior probabilities between a CORRIDOR
and a ROOM is not sufficiently large to discriminate between the two places.
However, from the model description, we know that the two places are disjoint
places, but both are subsumed by a building, which is an indoor place. Hence,
the difference in posterior probabilities between both indoor places and outdoors
is large enough to discriminate between INDOORS and OUTDOORS2. Here
knowledge of containment relations between places has contributed to minimize
uncertainty.

Figure 5 shows a different configuration for a similar topology, but for different
availability of sensors - temperature and light intensity sensors. The posterior
probabilities for this configuration are computed using equation (7), i.e., the con-
ditional probability that a place is P given temperature, light intensity, and time
measurements. This time the Bayesian Network was provided with the following
sensor measurement: {time = September 15, 2005, 1:35 PM}; {temperature =
17C}; and {light intensity = 1000 Lux}.

P (P |T, L, t) =
P (T |P, t)P (L|P, t).P (P)∑
P P (T |P, t)P (L|P, t)(P))

(7)

2 To minimize error in decision making, we applied a heuristic-based decision threshold
by setting the difference in posterior probability between two places to be more than
15%.

Integrating Facts and Beliefs to Model and Reason About Context 29

Fig. 6. A Bayesian Network with two parent nodes and three child nodes (relative
humidity, temperature, and light intensity)

The light intensity of 1000 Lux was mapped to the linguistic variable: visible.
This time the posterior probabilities yield: {corridor, 0.39}, {room, 0.5}, and
{outdoors, 0.1}. Still the difference between the posterior probabilities of a room
and a corridor is not significant enough to discriminate between the two places;
but the difference between the posterior probabilities of the two indoor places
and outdoors is significant enough to discriminate between indoors and outdoors.

Figure 6 displays a Bayesian Network with three child nodes: temperature,
light intensity, and relative humidity. The posterior probabilities for this config-
uration are computed using equation (8), according to which the probability of
a place having a state P is computed given humidity, light intensity, tempera-
ture and time measurements. The sensor measurements provided to the network
were: {Time = September 15, 2005, 1:35 PM}; {temperature = 17C}; {light
intensity = 1000 Lux}; and {relative humidity = 45%}.

P (P |T, H, L, t) =
P (T |P, t)P (H |P, t)P (L|P, t)P (P)∑
P P (H |P, t)P (T |P, t)P (L|P, t)(P))

(8)

Computing the posterior probabilities for the three different places yields:
{corridor, 0.38}, {room, 0.55}, and {outdoors, 0.06}. Now the discrimination
gap between a room and a corridor has increased. Therefore, with this configu-
ration, the Bayesian Network could discriminate between a room and a corridor,
and outdoors with minimised uncertainties.

6 Discussion and Conclusion

We motivated the integration of factual knowledge and beliefs about entities to
model and reason about a context of interest. The motivation was followed by
a twofold model comprising a probabilistic (beliefs) and a deterministic model

30 W. Dargie and T. Springer

(facts) for a comprehensive description of those aspects of a context we want
to reason about. This model was produced in four steps: (1) identification of a
context of interest; (2) identification of those aspects of the context which can
be captured by employing sensors; (3) determination of meaningful contextual
states for each aspect; and (4) determination of logical and probabilistic rela-
tionships between a context of interest and the various aspects it abstracts. We
demonstrated our approach by modelling various physical places.

Our guideline can be employed for modelling several complex contexts. A
health care application developer, for example, can employ our approach to de-
termine the stress level (the higher-level context) of a person. Depending on
available primitive context sources (e.g. oxygen sensors, blood pressure sensor,
respiratory sensors, etc.) it is possible to determine with various degrees of un-
certainty, whether a person is relaxed, mildly stressed, stressed, or significantly
stressed. Other activities such as driving or maintaining a machine can also be
modelled and reasoned about using our guideline.

Some final remarks regarding the modelling process: Determination of the
contextual states of a primitive context may not be a straightforward process.
Even though we encouraged the use of fuzzy sets, defining linguistic variables
as well as their corresponding membership in a fuzzy set requires an adequate
knowledge of the application domain as well as the characteristic and the range
of measurements taken from the available sensors. for many real-world example,
membership functions are complex. This can be an indication to the complexity
of context modelling and reasoning in general. The other challenge is the way
the states of the primitive contexts are related to the higher-level context of
interest. In our demonstration, we used Bayesian Networks to model conditional
independence, and the conditional probabilities were derived from the mem-
bership functions of the fuzzy sets. However, direct transition of membership
functions into conditional probability does not apply all the time.

A typical challenge we faced during our experiment was the response time
of the sensors employed. Most of our sensors were Dallas semiconductor sen-
sors, which were enclosed in a 16 mm thick stainless still can. There was a
delay of about 12 second before the sensors perceived an actual change in the
environment. Though this might be acceptable for many human activities, for
time critical applications this is not acceptable. Additional challenges included
dealing with light intensity sensors: we had to make certain that light was re-
ceived within the sensors specified incident angle; otherwise the amount received
would fall significantly. A similar problem associated with light intensity was the
sensors sensitivity to surrounding objects which absorb or reflect light. In the
presence of such objects, we frequently observed counterintuitive results.

References

1. Chen, H., Finin, T., Joshi, A., Perich, F., Chakraborty, D., Kagal, L.: Intelligent
agents meet the semantic web in smart spaces. IEEE Internet Computing, 8

2. Coutaz, J., Crowley, J., Dobson, S., Garlan, D.: Context is key. Communications
of the ACM, pp. 49–53 (2005)

Integrating Facts and Beliefs to Model and Reason About Context 31

3. Crowley, J., Coutaz, J., Bérard, F.: Perceptual user interfaces: things that see.
Communications of the ACM, vol. 43(3)

4. Dargie, W.: Dynamic generation of context rules. In: Lecture Notes in Computer
Science, pp. 102–115 (2006)

5. Dey, A., Abowd, G.: Cybreminder: A context-aware system for supporting
reminders

6. Gellersen, H., Schmidt, A., Beigl, M.: Multi-sensor context-awareness in mobile
devices and smart artifacts. Mob. Netw. Appl. 7(5), 341–351 (2002)

7. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: Proceedings of the Second IEEE international Conference
on Pervasive Computing and Communications (Percom’04) (2004)

8. Korpipää, P., Mäntyjärvi, J., Kela, J., Kernen, H., Malm, E.-J.: Managing context
information in mobile devices. IEEE Pervasive Computing (2003)

9. Pascoe, J., Ryan, N., Morse, D.: Using while moving: Hci issues in fieldwork envi-
ronments. ACM Trans. Comput.-Hum. Interact. 7(3), 417–437 (2000)

10. Salber, D., Dey, A., Abowd, G.: The context toolkit: Aiding the development of
context-enabled applications. CHI, pp. 434–441 (1999)

11. Schmidt, A., Beigl, M., Gellersen, H.: There is more to context than location.
Computers and Graphics, vol. 23(6) (1999)

12. Shilit, B., Theimer, M.: Disseminating active map information to mobile hosts.
IEEE Network, pp. 22–32 (1994)

13. Wang, X., Dong, J.S., Chin, C., Hettiarachchi, S., Zhang, D.: Semantic space: An
infrastructure for smart spaces. IEEE Pervasive Computing 3(3), 32–39 (2004)

14. Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput. Com-
mun. 3(3), 3–11 (1999)

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 32–47, 2007.
© IFIP International Federation for Information Processing 2007

Situation Specification and Realization in
Rule-Based Context-Aware Applications

Patrícia Dockhorn Costa1, João Paulo A. Almeida1,2,
Luís Ferreira Pires1, and Marten van Sinderen1

1 Centre for Telematics and Information Technology, University of Twente,
PO Box 217, 7500 AE Enschede, the Netherlands

2 Computer Science Department, Federal University of Espírito Santo (UFES),
Av. Fernando Ferrari, s/n, Vitória, ES, Brazil

{dockhorn, almeida, pires, sinderen}@cs.utwente.nl

Abstract. Context-aware applications use and manipulate context information
to detect high-level situations, which are used to adapt application behavior.
This paper discusses the specification of situations in context-aware applica-
tions and introduces a rule-based approach to detect situations. Situations are
specified using a combination of UML class diagrams and OCL constraints. We
support a wide range of situations, which can be composed of more elementary
kinds of context. We discuss how to cope with distribution and to exploit it
beneficially for context manipulation and situation detection. We employ a ge-
neric rule-based platform (DJess [2]) to support the derivation of situations in a
distributed fashion.

1 Introduction

Context-aware applications use and manipulate context information to detect the
situations of users and adapt their behaviour accordingly. Context-awareness has
become an important and desirable feature for ubiquitous computing, in which appli-
cations not only use context information to react on a user’s request, but also take
initiative as a result of (continuously-running) context reasoning activities. In this
sense, ubiquitous context-aware applications can be characterized as attentive in
addition to reactive. An example is an application that adapts the quality of audio and
video streams automatically according to battery power consumption and the kind of
network connectivity available, without user intervention.

The design of context-aware applications is a challenging task, which justifies the
development of novel methods, abstractions and infrastructures (e.g., [1, 3, 4, 6, 14]).
This paper proposes an approach to the specification and realization of situation
detection for attentive context-aware applications. Our aim is to facilitate application
design by providing abstractions for the specification of context-aware applications,
in particular those related to the detection of situations based on context information.
In order to detect situations attentively, a rule-based approach to situation detection is
proposed. This solution is based on the use of a general-purpose rule-based platform,
which guarantees the efficiency of situation detection (triggers upon situation detec-
tion as opposed to query-based solutions).

 Situation Specification and Realization in Rule-Based Context-Aware Applications 33

Situations are specified using standard UML 2.0 [18] class diagrams which are
enriched with OCL 2.0 [17] constraints to define the conditions under which situa-
tions of a certain type exist. We support a wide range of situations, which can be
composed of more elementary kinds of context. To transform the specification into a
set of rules to be executed directly on the rule-based platform, we identify a number
of patterns for rule detection realization. The rule set which is derived systematically
from the specification can be deployed directly in the Jess rule engine. We employ the
DJess distributed rule-based platform [2] to support the derivation of situations in a
distributed fashion. This paper extends the work presented in [7], by discussing
situation realization, detection and distribution.

The paper is further organised as follows. Section 2 discusses how context is mod-
elled in our approach drawing on our previous work [7, 8]. Section 3 discusses the
specification of situation types. Section 4 elaborates on the realization of situation
detection with the help of rule engines. Section 5 discusses how situation detection
can be done in a distributed fashion according to different scenarios. This is done to
exploit distribution beneficially for context manipulation and situation detection, not
only for scalability purposes but also to address information privacy concerns. Section
6 discusses related work, and, finally, Section 7 summarises our results and indicates
future research.

2 Context Models

A context-aware application is a distributed application that adapts its behaviour
according to its users’ context. Figure 1 depicts a user interacting with a context-
aware application. The application obtains context information from the user’s envi-
ronment (e.g., by means of sensor technology) in order to reason about context and
detect situations of interest.

end-users

context-aware
application

context
information

user interaction

context

Fig. 1. Users, their context and a context-aware application

Context can be defined as “the interrelated conditions in which something exists”
[15]. This definition reveals that context is only meaningful with respect to a thing
(that “exists”), which we call here an entity. The concept of entity is fundamentally
different from the concept of context: context is what can be said about an entity, i.e.,
context does not exist by itself. Examples of entities are persons, computing devices
and buildings. The context of an entity can have many constituents (“interrelated
conditions”). Examples of some constituents of the context of a person are the per-
son’s location, mental state, and activity. In the remainder of this paper, we use the

34 P. Dockhorn Costa et al.

term context to refer to constituents of the context of an entity. Together, these con-
stituents form the entity’s context.

The process of identifying relevant context consists of determining the “condi-
tions” of entities in the application’s universe of discourse (e.g., a user or its environ-
ment) that are relevant for a context-aware application or a family of such
applications. The representation of these relevant conditions or circumstances is
called here a context model. We define a context model as a conceptual model (in the
sense of [16]) of context. In previous work [7, 8], we have defined conceptual founda-
tions that can be used beneficially in context modeling. These conceptual foundations
include the separation of entity and context types, which are represented here as UML
classes. We briefly discuss these foundations in the sequel. The work presented in [7,
8] provides a more detailed discussion.

Intrinsic Context
We characterize context as either Intrinsic or Relational. Intrinsic context defines a
type of context that belongs to the essential nature of a single entity, i.e., it does not
exist separate from this entity. In addition, intrinsic context does not depend on the
relationship with other entities. Figure 2 depicts examples of intrinsic context types
which could be used in many health-related applications. Geographic location (Ge-
oLocation) is context that inheres in all spatial entities. Similarly, battery power
(BatteryPower) inheres in a computing device (Device). Analogous reasoning can be
applied to other context types depicted here.

Fig. 2. Intrinsic context types

Intrinsic context types are associated with a data type such that an instance of an
intrinsic context type is assigned to a value of this data type. The geographical
location of an entity is an example of intrinsic context type, whose data type consists
of all possible values in a geographical coordinate system, represented by the
GeoCoordinate datatype.

Relational Context
While intrinsic context inheres in a single entity, relational context inheres in a
plurality of entities. Relational context may be used to relate an entity to the collection

 Situation Specification and Realization in Rule-Based Context-Aware Applications 35

of entities that play a role in the entity’s context. Figure 3 shows examples of
relational context types. The NetworkAvailability relational context type relates a
device to a collection of networks that are available through that device, and
ChannelAvailability relates a device to a collection of communication channels
supported by that device (e.g., e-mail, voice and SMS).

Fig. 3. Relational context types

Some other examples of relational context are DeviceAvailability and
SocialNetwork. The DeviceAvailability relational context relates a person to a
collection of devices that are available to that person. SocialNetwork relates a
person to the collection of persons interacting with that person by any communication
channels.

3 Situation Models

The context models we have discussed so far, allow application designers to represent
a context-aware application’s universe of discourse. This section introduces situation
models, which explicitly represent particular situations of interest, given a certain
context model.

Situations define particular states of affairs which are of interest to applications.
They are composite concepts whose constituents are the elements of our context
models, i.e., entities, and intrinsic and relational contexts. In this sense, situation
models should extend and comply with the context models. For example, a situation
model can represent the situation in which “John is near Alice and their mobile
phones are available” or “John has a fever and influenza”. The underlying context
model for this example should define that a person may be near another person and
that a person may own a mobile phone.

In our approach we define situation types, which aim at characterizing situations
with similar properties. For example, the situation type “John is within 50 meters
from Alice” consists of all situation instances in which the distance between John’s
and Alice’s location values is less than 50 meters. Similarly, the situation type “Per-
son is within 50 meters from another person” consists of all situation instances in
which the distance between any two persons’ location values is less than 50 meters.
Although unanticipated situation instances are supported at application runtime,
situation types are defined at application design-time.

36 P. Dockhorn Costa et al.

The examples used throughout the paper illustrate a range of situation patterns that
are relevant for context-aware applications. These patterns involve the different kinds
of context (intrinsic and relational) and entities, which are the building blocks used to
compose situations. We use a combination of UML class diagrams and OCL con-
straints to specify situations.

3.1 Situations Involving Intrinsic Context

Situations involving intrinsic context are composed by a unique entity and part of its
intrinsic context. The following example represents a situation type (SituationAvail-
able) that captures the availability and willingness to communicate of MSN and Skype
users. Figure 4 depicts a fragment of the structural context model that represents the
MsnStatus and SkypeStatus intrinsic context types, which model the user’s
communication status while using MSN and Skype, respectively. A person, while
playing the role of MsnUser, is associated with MsnStatus context type, and while
playing the role of SkypeUser, is associated with SkypeStatus context type. The
enumeration data types SkypeStatusEnum and MsnStatusEnum define all
possible values for SkypeStatus and MsnStatus, respectively.

Fig. 4. Fragment of context model

Figure 5 depicts a situation model which builds on the context model presented in
Figure 4, defining the situation type SituationAvailable.

Fig. 5. SituationAvailable specification

 Situation Specification and Realization in Rule-Based Context-Aware Applications 37

The OCL invariant in this diagram is a predicate that must hold for all instances of
SituationAvailable. It defines that instances of SituationAvailable must be either
associated with a user available in Skype (with SkypeStatus set to Online or
SkypeMe) or a user available in MSN (with MsnStatus set to Online or BeRightBack).
The OCL operation oclIsUndefined() is part of the OCL standard library and tests
whether the value of an expression is undefined.

Figure 6 shows an example of situation involving two entities and their intrinsic
context. Their locations are compared such that instances of SituationWithinRange
hold if two persons are located within a certain range (defined as an attribute of the
SituationWithinRange class). This model builds on the context model defined in
Figure 2.

Fig. 6. SituationWithinRange specification

3.2 Situations Involving Relational Context

Situations involving relational context consist of at least two entities and part of their
relational contexts. The following example discusses a situation in which a device has
established a connection (relational context type) to each of the two network types,
WLAN, and Bluetooth (entities). By explicitly modeling the connections as relational
context, we are able to assign properties to these connections, such as access rights
and negotiated QoS.

Figure 7 depicts the structural context models representing the types and relation-
ships that are relevant for this example. According to this diagram, a Device may be
connected to a Network through the relational context Connection.

Fig. 7. Fragment of context model

38 P. Dockhorn Costa et al.

Figure 8 depicts the situation type SituationConnected. The OCL invariant defines
that instances of this situation must be associated with at least one connection object.

Fig. 8. SituationConnected specification

3.3 Situation of Situations

Situation themselves may be composed of other situations. Suppose we would like to
know when a device switches from a WLAN connection to a Bluetooth connection in
order to set new quality of service parameters. Since SituationConnected has been
already defined in Figure 8, in order to detect SituationSwitch, we would have to
verify whether SituationConnected held in the past for network WLAN, and currently
holds for network Bluetooth. We may add the additional constraint that the handover
time should not be longer than one second. This example is depicted in Figure 9,
showing that SituationSwitch can be modeled by composing multiple occurrences
of SituationConnection, one called wlan, and the other called bluetooth.

Fig. 9. SituationSwitch specification

This situation requires using temporal aspects, which are represented in our ap-
proach by means of initial and final times. Each situation type extends the
SituationType class inheriting these temporal attributes. The initialtime attribute
captures the moment a situation begins to hold, and the finaltime attribute, the
moment a situations seizes to hold. Since we capture the finaltime, our model

 Situation Specification and Realization in Rule-Based Context-Aware Applications 39

represents past occurrences of situations1. We also include temporal operations for
relating situations in their occurrence intervals, such as precedence, overlapping, and
post-occurrence. These operations are defined in OCL in terms of initial and final
times, and can be used in the definition of situations.

4 Rule-Based Implementation

In a rule-based implementation, the designer defines rules which are applied to facts
in a working memory. The mechanism used for rule application (and in our case
situation detection) is based on the Rete algorithm [11], which efficiently matches the
patterns for situations by remembering past pattern matching tests. Only new or
modified facts are tested against the rules.

Figure 10 depicts the elements of our approach with the correspondence between
the UML specification, the Java code and the Jess code at the template level (design-
time). At the instance level (runtime), Figure 10 depicts the relations between the
user’s context and the rule-based implementation. Context sources provide context
information, which is input as facts in the engine’s working memory.

application
designers

situation models
(UML + OCL)

context models
(UML + OCL)

context models
(UML class
diagram)

situation models
(UML class
diagram)

condition 1

condition 3

…

context

condition 2

service users

rule
engine

working
memory

rule
set

app.
entity

context models
(UML + OCL)

context models
(Java classes)

context models
(UML + OCL)

context fact
templates (Jess)

context models
(UML + OCL)

situation models
(Java classes)

context models
(UML + OCL)

situation fact
templates (Jess)

Template level
(design-time)

Instance level
(run-time)

context models
(UML + OCL)

situation detection
rules (Jess)

“shadow”
mechanism

“shadow”
mechanism

situation models
(UML + OCL)

situation models
(OCL invariants)

context sources

context sources

specification realization

Universe of discourse

Fig. 10. Correspondences between UML specifications, and Java and Jess code

1 The invariants as presented in the figures are violated for past occurrences of situations. In

order to avoid that, we should include, for each invariant, a disjunction with a predicate that
verifies whether this situation is a past occurrence (not finaltime.oclIsUndefined()). We omit
this predicate in this paper for the sake of readability.

40 P. Dockhorn Costa et al.

We have used shadow facts to implement our structural context models. This is a
mechanism offered by Jess to serve as a connection between the working memory and
a Java application. Objects created in Java are reflected in the working memory.
Therefore, any alteration of the Java objects is automatically perceived by the Jess
working memory. The Java classes in our implementation directly reflect the UML
models defined at the context model, such that their generation can be automated. We
have used Octopus (http://www.klasse.nl/octopus) for generating Java code from
UML2.0 class diagrams.

Once we have defined the structural context models, we can carry out the situation
detection realization. Similarly to the structural context model, each situation type, as
specified in the UML class diagram, corresponds to a Java class, as well as a shadow
fact template. Situation instances are represented as shadow facts that are created and
deactivated by rules for situation detection. Each situation type leads to the definition
of two rules, namely a rule for situation fact creation, and a rule for situation fact
deactivation. Conditions for enabling these rules are derived from the invariants of
situation classes. The rule for situation creation detects when an invariant becomes
true, and the rule for situation deactivation detects when the invariant becomes false.
We have identified patterns of situation types that are systematically mapped to Jess
code. Automatic code generation from OCL to Jess is work in progress.

A situation fact life cycle consists of creation, activation, deactivation and destruc-
tion. The activation of a situation fact occurs simultaneously to its creation, and the
deactivation occurs when the situation invariant no longer holds. Figure 11 uses a
UML 2.0 activity diagram to show when situations should be created or deactivated.
When the invariant holds and the situation fact does not exist yet, the situation fact is
created; when the invariant no longer holds, the situation fact is deactivated.

Fig. 11. Activity diagram for situation creation and deactivation

Deactivated situation facts consist of historical records of situation occurrence,
which may be used to detect situations that refer to past occurrences. Currently, we
implement a simple rule-based time-to-live mechanism for historical records, which
considers the final time of deactivated situation facts. We have identified that situa-
tion realization in Jess follows certain patterns of implementation. Table 1 depicts
how creation and deactivation rules should be formulated.

These rules are written in the Jess language. Conditions and actions are separated
by the symbol “=>”. The condition part (or left hand side) consists of patterns that
match facts in the working memory. A pattern is represented in between parentheses,

 Situation Specification and Realization in Rule-Based Context-Aware Applications 41

Table 1. Creation and deactivation rules

Creation Rule Deactivation Rule

(situation type invariant)

(not (situation exists))

=>

create (situation)

[RaiseEvent()]

(not (situation type invariant))

(situation exists)

=>

deactivate (situation)

[RaiseEvent()]

such as (situation type invariant). The action part of a rule (or right hand side)
contains function calls, such as the functions to create and to deactivate situations.

The condition part of a creation rule checks whether the OCL invariant holds, and
whether there is already an instance of that particular situation currently active (final
time not nil). If these conditions are met, a situation fact is created, and optionally,
an event can be raised. Analogously, the condition part of a deactivation rule
checks whether the OCL invariant no longer holds, and there is a current situation fact
active. When these conditions are met, this situation instance is deactivated, and
optionally, an event can be raised. Figure 12 depicts how SituationConnected and
SituationSwitch (see section 3) are implemented in Jess.

;Creation rule (SituationConnected)
(defrule create_situation_connected
 (Device (OBJECT ?dv) (hasContext ?contexts) (sizeContexts ?s))
 (test (?dv hasContextType "context_control.Connection"))
 (not (SituationConnected (OBJECT ?st) (device ?dv) (finaltime nil)))
 =>
 (bind ?SituationConnected (new situation_control.SituationConnected ?dv))
 (definstance SituationConnected ?SituationConnected))

;Deactivation rule (SituationConnected)
(defrule deactivate_situation_connected
 (Device (OBJECT ?dv) (identity ?id) (hasContext ?ctxs) (sizeContexts ?size))
 (test (not (?dv hasContextType "context_control.Connection")))

 (SituationConnected (OBJECT ?st) (device ?dv) (finaltime nil))
 =>
 (call ?st deactivate))

;Creation rule (SituationSwitch)
(defrule create_situation_switch
 (Device (OBJECT ?dv) (identity ?dvid))
 (SituationConnected (OBJECT ?SWlan)
 (device ?device&:(eq (call ?device getIdentity) ?dvid))
 (network ?net&:(instanceof ?net context_control.WLAN))
 (finaltime ?finaltime&:(neq ?finaltime nil)))
 (SituationConnected (OBJECT ?SBlue) (device ?dv)
 (network ?net2&:(instanceof ?net2 context_control.Bluetooth))
 (starttime ?start) (finaltime nil))
 (test (<= (- (call ?start getTime)(call ?finaltime getTime)) 60000))
 (not (SituationSwitch (OBJECT ?st) (wlan ?SWLAN) (bluetooth ?SBlue)
 (finaltime nil)))
 =>
 (bind ?SituationSwitch (new situation_control.SituationSwitch ?SWlan ?SBlue))
 (definstance SituationSwitch ?SituationSwitch))

Fig. 12. Situation realization in Jess

The condition part of the create_situation_connected rule checks whether there
is a Connection relational context in the list of contexts of that device. This part of

42 P. Dockhorn Costa et al.

the condition corresponds to the OCL invariant defined in Figure 8. In addition, it
checks whether a SituationConnected instance does not already exist for that device.
When these conditions are met, the action part is triggered, i.e., an instance of
SituationConnected is created for that device.

The condition part of the deactivate_situation_connected rule, on the contrary,
checks whether the device is no longer connected to a network, and if there is an
existing SituationConnected for that device. If these conditions are met, that particu-
lar instance of SituationConnected is deactivated, and can be used in the future as a
historical record.

The condition part of the create_situation_switch rule checks whether there
was an instance of SituationConnected with network WLAN in the past (finaltime
not nil), and currently there is an instance of SituationConnected with network
Bluetooth. In addition, the handover time should not be longer than 60 seconds.
These parts of the condition correspond to the OCL invariant depicted in Figure 9. As
in all creation rules, the condition also checks whether there is no instance of Situa-
tionSwitch for that particular handover currently active. When these conditions are
met, an instance of SituationSwitch is created. We did not include here the deacti-
vate_situation_switch rule due to the lack of space.

To allow maintenance of past situations, we use a mechanism based on object seri-
alization to preserve the situation state at the time the situation was deactivated. When
a situation is deactivated, a serialized copy of the situation is created and stored for
future use. Serialized objects are given unique identifiers, so that they can be retrieved
unambiguously. For this reason, when checking the existence of a past instance of
SituationConnected, we have used an unique identifier of the device (call ?device
getIdentity), instead of the object identifier (device ?dv) as in the currently active
instance.

5 Distribution Issues

So far, we have focussed on the various rule patterns for the detection of the various
kinds of situation. We have presented the realization solutions without regard for
distribution, as if situation detection were based on a single rule engine, working with
a single set of rules and a single working memory. In this section, we consider alter-
native distribution scenarios, and discuss their trade-offs.

Firstly, we consider the fully centralized scenario, in which no distribution is em-
ployed. In this scenario, context sources feed context information into the central rule
engine’s working memory, as depicted in Figure 13. This is the simplest scenario, and
has limited scalability with respect to the number of situations detected, even when
situations are entirely independent of each other, i.e., when situations are detected
using context conditions that are sensed independently, and are not composed of other
situations. The centralized approach introduces a single point of access to context
information, which can be considered a potential (privacy) hazard, due to the sensitive
nature of particular kinds of context information.

Secondly, we consider a scenario with multiple hub-and-spokes for situation detec-
tion. In this scenario, multiple engines detect independent situations. The level of
distribution is constrained by the nature of the situation model, each hub-and-spoke

 Situation Specification and Realization in Rule-Based Context-Aware Applications 43

condition 1

condition 3

…

context

condition 2

service users

rule
engine

working
memory

rule
set

app.
entity

all situations and relevant
context as facts in
 single working memory

Fig. 13. Centralized scenario

pattern consisting of a centralized solution. In this approach, each rule engine may be
associated to a different administrative domain, which enables more fine-grained
control of the (privacy) policies which apply to the context information for that
domain. The solution is highly constrained by the nature of the situation model, since
all related situations must be detected in the scope of the same rule engine. Figure 14
depicts this solution with two rule engines detecting independent situations 1 and 2.

condition 1

condition 3

…

context

condition 2

service users

rule
engine

working
memory

rule
set

rule
engine

working
memory

rule
set

app.
entity

situation 1 as fact in
working memory

situation 2 as fact in
working memory

Fig. 14. Multiple hub-and-spokes scenario

Finally, we consider a distribution scenario with a higher level of distribution that
not only exploits possible independent situations, but that is able to decompose
situation detection further, and distribute parts of the rule detection functionality to
different rule engines. Different distribution strategies and rule engine configurations
can be accommodated using this approach. Figure 15 depicts a possible configuration
with two independent situations 1 and 2 detected independently in rule engines A and
B (as in the hub-and-spokes scenario). The facts corresponding to those situations are
shared with a rule engine C, which detects a situation 3 which is derived from situa-
tions 1 and 2. We propose a shared working memory mechanism that is part of the
DJess infrastructure [2] to realize this approach. With this mechanism, rule engines

44 P. Dockhorn Costa et al.

running in different nodes can apply rules on shared sets of facts. A rule engine may
participate in multiple shared memory partnerships (which are called Web of Infer-
ence Systems in DJess), each of which defining a shared set of facts, thus allowing
arbitrary configurations.

Fig. 15. Distributed scenario

The distributed scenario enables fine-grained control of the policies that apply to
context information, since different rule engines and parts of situation detection can
be associated with different administrative domains. The policies for context informa-
tion may justify in this scenario different distribution strategies. For example, con-
sider an application that uses the distance between two users to determine whether
users can view each other’s contact information. Suppose further that GPS location is
used to compute the distance between users. Due to the sensitive nature of the “raw”
GPS location, different policies apply to this information, and to the aggregate and
usually less sensitive distance information. In this case, GPS location should be only
available to the engines that derive proximity information. Only the aggregated
proximity information should be shared with other engines that define contact infor-
mation visibility.

6 Related Work

Several approaches presented in the literature [12, 13, 19] support the concept of
situation as a means of defining particular application’s states of affairs. These ap-
proaches usually apply centralized mechanisms, and instead of detecting situations
attentively, they offer reactive query interfaces, which do not take the initiative of
generating events upon situation detection.

The work presented in [13] discusses a situation-based theory for context-
awareness that allows situations to be defined in terms of basic fact types. Fact types
are defined in an ORM (Object-Role Modeling) context model, and situation types are
defined using a variant of predicate logic. The realization supported by means of a
mapping to relational databases, and a set of programming models based on the Java

 Situation Specification and Realization in Rule-Based Context-Aware Applications 45

language. Although CML is based on a graphical notation, to the best of our knowl-
edge, there is no modeling tool available for graphical situation specification. In
addition, the implementation, as reported in [13], does not consider situation detection
distribution.

None of the approaches we have studied use UML 2.0 in combination with OCL
invariants for defining situation types. UML is unfairly underestimated in the context-
awareness community. As we have seen in this paper, UML can be an appropriate and
effective tool for modeling context and situations types. Furthermore, UML is cur-
rently widely adopted as a general modeling language, with extensive documentation
and tool support.

7 Conclusions

We have proposed a novel approach for the specification and realization of situation
detection for attentive context-aware applications. The specification approach is based
on our earlier work on conceptual modeling for context information, and uses stan-
dard UML class diagrams for graphical representation of context models and situation
models. Situations can be composed of more elementary kinds of context, and in
addition can be composed of existing situations themselves. We have addressed the
temporal aspects of applications, and included primitives to relate situations based on
their temporal aspects.

The realization is rule-based, and executes on mature and efficient rule engine
technology available off-the-shelf. The rule set is derived systematically from the
specification and has been deployed directly in the Jess rule engine. We have argued
that a distributed solution to situation detection has benefits, which apply to context-
aware applications in particular. We have realized communication between rule
engines by using the DJess shared memory mechanism, which allows different
engines to execute their rule base in a shared set of facts.

This work is part of a larger effort towards a generic infrastructure to support con-
text-aware applications. The use of a rule-based approach enables us to perform
situation detection efficiently, and to generate events for situation detection with little
effort. In addition, we also apply rule-based approaches to implement Event-
Condition-Action (ECA) rules in our infrastructure [9].

As part of future work, we intend to study more complex mechanisms for discard-
ing historical situation records that will no longer be used. Our current solution uses
time-to-live for discarding historical records. An alternative solution is to eliminate all
historical data that is not referred by any active situation. This requires complex
inspection on situation type dependencies.

Acknowledgements

This work is part of the Freeband AWARENESS and A-MUSE projects (http://
awareness.freeband.nl and http://amuse.freedband.nl). Freeband is sponsored by the
Dutch government under contract BSIK 03025.

46 P. Dockhorn Costa et al.

References

1. Almeida, J.P.A., Iacob, M.E., Jonkers, H., Quartel, D.: Model-Driven Development of
Context-Aware Services. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006. LNCS,
vol. 4025, pp. 213–227. Springer, Heidelberg (2006)

2. Cabitza, F., Sarini, M., Dal Seno, B.: DJess - a context-sharing middleware to deploy dis-
tributed inference systems in pervasive computing domains. In: Proceeding of Interna-
tional Conference on Pervasive Services (ICPS ’05), pp. 229–238. IEEE CS Press,
Washington, DC (2005)

3. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for Support-
ing the Rapid Prototyping of Context-Aware Applications. Human-Computer Interac-
tion 16(2-4), 97–166 (2001)

4. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing envi-
ronments, Knowledge Engineering Review. In: Special Issue on Ontologies for Distributed
Systems, vol. 18(3), pp. 197–207. Cambridge University Press, Cambridge (2003)

5. Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M.: Architectural Support for Mobile
Context-Aware Applications. In: Handbook of Research on Mobile Multimedia, Idea
Group Inc. (2005)

6. Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M.: Designing a Configurable Ser-
vices Platform for Mobile Context-Aware Applications, International Journal of Pervasive
Computing and Communications (JPCC), vol. 1(1). Troubador Publishing (2005)

7. Dockhorn Costa, P., Guizzardi, G., Almeida, J.P.A., Ferreira Pires, L., van Sinderen, M.:
Situations in Conceptual Modeling of Context. In: Workshop on Vocabularies, Ontologies,
and Rules for the Enterprise (VORTE 2006) at IEEE EDOC 2006, IEEE CS Press,
Washington, DC (2006)

8. Dockhorn Costa, P., Almeida, J.P.A., Ferreira Pires, L., Guizzardi, G., van Sinderen, M.:
Towards Conceptual Foundations for Context-Aware Applications. In: Proc. of the Third
Int’l Workshop on Modeling and Retrieval of Context (MRC’06), Boston, USA (2006)

9. Etter, R., Dockhorn Costa, P., Broens, T.: A Rule-Based Approach Towards Context-
Aware User Notification Services. In: Proc. of the IEEE International Conference on Per-
vasive Services 2006, Lyon, France (2006)

10. Freeband A-MUSE Project, http://www.freeband.nl/project.cfm?id=489
11. Friedman-Hill, E.: JESS in Action: Rule-Based Systems in Java. Manning Publications

Co., (2003)
12. Hang Wang, X., Qing Zhang, D., Gu, T., Keng Pung, H.: Ontology-Based Context Model-

ing and Reasoning Using OWL. In: Proc. of the 2nd IEEE Annual Conf. on Pervasive
Computing and Communications Workshops (PERCOMW04), USA, pp. 18–22 (2004)

13. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications:
Models and approach. Journal of Pervasive and Mobile Computing, vol. 2(1), pp. 37–64.
Elsevier (2006)

14. McFadden, T., Henricksen, K., Indulska, J., Mascaro, P.: Applying a Disciplined Ap-
proach to the Development of a Context-Aware Communication Application. In: 3rd IEEE
Conf. on Pervasive Computing and Communications (Percom 2005), IEEE CS Press,
Washington, DC (2005)

15. Merriam-Webster, Inc.: Merriam-Webster Online: http://m-w.com
16. Mylopoulos, J.: Conceptual modeling and Telos. In: Loucopoulos, P., Zicari, R. (eds.)

Conceptual modeling, databases, and CASE, John Wiley and Sons Inc., New York (1992)

 Situation Specification and Realization in Rule-Based Context-Aware Applications 47

17. Object Management Group: Unified Modelling Language: Object Constraint Language
version 2.0, ptc/03-10-04 (2003)

18. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02 (2003)
19. Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A Context Ontology Language to en-

able Contextual Interoperability. In: Proc. of the 4th IFIP International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS2003), pp. 236–247 Paris (2003)

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 48–61, 2007.
© IFIP International Federation for Information Processing 2007

Observability and Controllability of Wireless Software
Components

Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

LIUPPA, Université de Pau et des Pays de l'Adour
Av. de l’Université, B.P. 1155, F-64013 PAU - France

fabien.romeo@univ-pau.fr, franck.barbier@franckbarbier.com,
jean-michel.bruel@univ-pau.fr

Abstract. Software components embedded in wireless devices are subject to
behavior which cannot be fully and realistically predicted. This calls for a
runtime management infrastructure that is able to observe and control the com-
ponents’ states and to make their behaviors explicit, tangible and under-
standable, in any case and at any time. In this paper, we propose a framework
for remotely administrating the functional behavior of software components
deployed on wireless nodes. This framework is based on components which are
locally managed by internal managers on the wireless side. The controllable
nature of components relies on executable UML models that persist at runtime.
On the administration side, models are replicated and synchronized with the
models that constitute the inner workings of the wireless components.

1 Introduction

Component-based development is a challenging topic in the area of ubiquitous sys-
tems. More particularly, this is illustrated by research on specialized component
models (e.g., pect [1], koala [2], pecos [3], beanome [4] or frogi [5]) which them-
selves may support composition techniques that are specific to ubiquitous systems.

Many studies have shown that embedded system developers expect better analysis
supports of software behavior. Better testability and debuggability are among these
major requirements [6, 7]. Component-based development may be seen as a break-
through with respect to this topic. Indeed, building software by means of components
enables the identification and the setup of deployment properties. As for the
compositions of components, they may express links which may reflect wireless
infrastructures in a structured and logical way. If one has at one’s disposal an
appropriate formalism to design the inside of components (implementation) and the
outside (interfaces and their dependencies embodying compositions), runtime
management may benefit from this formalism. More specifically, this concerns the
executable component/composition behavior models that result from using this
formalism. Therefore, models act as tracking and monitoring supports.

In the area of ubiquitous systems, mastering deployment conditions includes
overcoming some stumbling blocks. Instable communication connections that may be
broken, damaged modes are frequent, runtime environments/infrastructures are mobile

 Observability and Controllability of Wireless Software Components 49

and may quickly evolve, etc. Thus, emphasizing the management-centric or model-
driven design of software components is not enough. A management system on the top
of a distributed application composed of several varied wireless components also
requires specific attributes: self-management as defined by autonomic computing [8],
special manager roles and distribution of the management layer itself.

In this paper, we describe WMX (Wireless Management eXtensions) [9], an adap-
tation of JMX, which is the standardized management API and framework in the Java
world [10]. Although WMX is the adaptation of JMX for ubiquitous systems, we add
in WMX an enhanced support to have “true” manageable software components and
compositions. While JMX stresses the management infrastructure (inspired by norms
like GDMO - Guidelines for the Definition of Managed Objects), it does not provide a
component design method. This means that the inside of these components, at any
time, may not really be interpretable and intelligible by management systems; these
being human or autonomic. Like JMX, we offer a coercive framework in which com-
ponents comply with design rules so that they may be deployed in WMX-compliant
environments. This point mainly relies on the idea of embedded internal managers
which interact with the management side. Components are in particular endowed with
dedicated management interfaces in order to sort out what is and has to be managed.

Contrary to JMX, we organize and implement the inside and thus the behavior of
components based on executable UML 2 State Machine Diagrams, a variant of
Harel’s statecharts [11]. To enable the persistence of these models at runtime, we
have a J2ME (Java 2 Micro Edition)-compliant library which includes and organizes
observation and control activities around the components’ abstract states. This inclu-
des the dependencies between these states (exclusiveness, orthogonality and nesting)
and the logical communications of components (event sending) which embody comp-
ositions. Concretely, complex state machines may graphically appear in consoles or
GUIs and act as the key entry point for management: forcing states for instance.

To present and explain WMX, this paper first discusses the idea of locally
managed components, which are the basis of the proposed infrastructure. Next, the
relationships between internal managers and the global management system are
described. Finally, a case of composition management is illustrated by means of an
example. Before we conclude, synthetic performance measures are listed.

2 Internal Management of Components

We first present the design of a locally managed component, made up of business
functionalities embodied in a business subcomponent and a modeled behavior
controlled by its internal manager. The correlation between these two subcomponents
and the behavior model are detailed in the section 2.2.

2.1 Internal Managers and Business Components

In classical management solutions [8, 13] the application and the management system
interact through sensors and actuators – or effectors in the autonomic metaphor.
Sensors are used by managers to probe the application and actuators are used to
execute application actions.

50 F. Romeo, F. Barbier, and J.-M. Bruel

In CBSE, [14] has defined a specific interface, the Diagnostic and Management
interface, which provides selective access to the internals of the components for
management purposes. Since components communicate through their interfaces, it is
natural to specify sensors and actuators as interfaces. Figure 1 depicts, through UML
2 Component Diagrams the resulting architecture of our notion of locally managed
component. We have gathered in management ports three types of interfaces acting as
sensors and actuators to relay information between the business component and the
internal manager inside the locally managed component.

Managed Component

Business
Component

Internal
Manager

provided interface

required interface

external
effector

external
pushed
sensor

external
pulled
sensor

external
application

port

external
management

port

internal effector

internal pulled sensor

internal pushed sensor

internal
management

port

internal
management

port

Fig. 1. Managed Component Architecture

From a design perspective, we have on one side the business component, which
implements the concrete business functionalities, i.e. the computation, and on the
other side the internal manager, which controls the component according to its
defined behavior model. In this way, the internal manager totally encapsulates the
control logic, which is then externalized from the business component (as
recommended by [15]) to maximize loose coupling between the components. We
have thus been able to compose components according to their behavior models [16],
but the definition of such a composition mechanism is out of the scope of this paper.

The managed component can also communicate with other external components
through classical provided and required interfaces. These interfaces are part of an
external application port that is connected to the business component that is
responsible for business functionalities. The internal management is connected with
an external management port, which is comprised of sensors and actuators, through
which the management system can query the manager about its component's states
and act on its behavior (see section 3).

2.2 Behavior Model Facilitating the Management of Components

The principle of the management framework is to include a statechart [11] within
each managed component's internal manager. This statechart specifies the
component's behavior by a set of states and transitions. Figure 2 represents a detailed
UML 2 diagram relating to an example of a managed component. Its behavior is
defined by the statechart in Figure 3. The detailed component diagram explicits the

 Observability and Controllability of Wireless Software Components 51

«require»

«class»
Business component

Implementation Class

«service» service1()
«service» service2()
«service» serviceX()
«action» action0()
«action» action1()
«action» action2()
«action» action3()
«action» action4()
«guard» guard1()
«guard» guard2()

Business Component

«implement»

«interface»
Business Component
Functional Interface

service1()
service2()

serviceX is not part of the functional
interface since it is only sent internally

1

«class»
Internal Manager

Implementation Class

control_service1()
control_service2()
control_serviceX()
execute(action)
to_state(state)
in(state)

_Composytor::Statechart_monitor

«interface»
Internal Pushed

Sensor

control_service1()
control_service2()
control_serviceX()

«interface»
Internal Pulled

Sensor

guard1()
guard2()

«interface»
Internal Effector

service1()
service2()
serviceX()
action0()
action1()
action2()
action3()
action4()

«interface»
External Pushed

Sensor

state_changed(transition)

«interface»
External Pulled

Sensor

in(state)

«interface»
External Effector

execute(action)
to_state(state)

Internal Manager

«implement»

«require»

«require»

«require»

Fig. 2. Managed Component’s Detailed Architecture

interfaces defined in Figure 1 and the implementation classes of this managed
component. The behavior of this component is executed by a statechart engine, the
Statechart_monitor associated with the internal manager.

During its execution, this managed component can only be in one of its two
mutually exclusive states SA or SB. According to statechart formalism, SA is the
initial state. In this state, a request on service1 exposed in the component's functional
interface would generate an event in the internal manager that would trigger a
transition from SA to SB, whereas requests on any other service would have no effect.
Conversely, in state SB this same event would trigger a transition to SA, no matter
what substates the component may have. SB is a composite state divided into
orthogonal regions. At SB entry, the component is simultaneously in substates S10, S2
and S3, which causes the internal manager to execute in parallel through the internal
effector action0 and action3 on the business component which implements them. In
S10 substate, a call to service2 could trigger a transition to S11 or a transition to S12
depending on whether guard1 or guard2 hold. Note that only one of these two guards
can hold simultaneously as specified, if they could hold two at the same time there
would have been a consistency error in the statechart due to indeterminism. So if
guard1 holds, action1 is executed and the component enters into substate S12. Notice
that it also re-enters into S2, as a self-transition is defined for this state upon detection
of event service2, regardless if guard1 or guard2 hold. If guard2 holds, then a signal
is sent to component self, i.e. to itself, as specified by the following notation
^self.serviceX.

52 F. Romeo, F. Barbier, and J.-M. Bruel

Managed Component

S11
entry: action1

S2
entry: action3

S10
entry: action0

S12
entry: action2

SB

SA

S3service2 serviceX / action4

service1

service1

service2 service2

service2 [guard1] / ^self.serviceX service2 [guard2] / action1

with (guard1 => not guard2) and (guard2 => not guard1)

Fig. 3. Managed Component Behavior

This example illustrates the relationship between the internal manager and the
business component it controls. We can see that two kinds of data need to be captured
by the manager: service requests and low-level states. Low-level states are values of
objects' attributes that are traditionally monitored in management and are collected
here in an abstract way by the evaluation of predefined guards. In management, two
different models are used to monitor data: push and pull models [17]. The pull model
is based on the request/response paradigm. In this model, the manager sends a data
request to the managed host according to its needs, then the managed host replies.
Such a sensor, which we call pulled_sensor, is used to evaluate the statechart's guards
whenever required by adding a provided interface to the business component.
Conversely, the push model is based on the publish/subscribe/distribute paradigm. In
this model, the manager specifies the data it is interested in, then the managed host is
responsible for pushing this data to the manager whenever they change. Thus a
pushed_sensor is perfectly adapted to collect the business component's incoming
events upon reception. We have added a required interface to the business component
to equip it with such a sensor.

3 External Management of Components

Management involves two dual activities, monitoring and control. The first part of
this section focuses on the way monitoring is considered between a managed
component and our management system and the second presents the different control
functionalities that are provided.

 Observability and Controllability of Wireless Software Components 53

3.1 Monitoring

Monitoring is the activity of making continuous observations of the evolution of state
variables that reflect system dynamics. In the last section, we have seen that the internal
manager is responsible for the direct monitoring of the managed component's business
activity. But since it is not fully self-manageable, management information needs to be
acquired by a higher level management system. In our context of deploy-ing
components in embedded systems, the management system has to perform wirelessly,
away from managed components. The reason for not integrating this management
system into the application system itself is two-fold. First, as we are in a wireless
context, we aim at avoiding the overload of wireless devices with heavy management
computation. Second, the user interfaces of such systems, often mechanical, are minimal
when they exist and thus are not appropriate for management activity.

Hence, we choose to replicate the behavior, i.e. the statechart, of managed compo-
nents on the management side. In managed component internals, the data we managed
are events and low-level states (as shown in section 2). A first approach is to
reproduce the same scheme. In [18] we forwarded only the events and not the low-
level states, which would have been too heavy and inefficient since we do not need to
know every change in this data. But this caused synchronization problems since the
value of this data is used in guards for firing transitions. As a result, we could not
deduce all the transitions that were actually fired.

In order to avoid this problem, we now forward fired transitions instead of events.
Hence, we ensure that the replicated statechart evolves in the same way as the original
does. In addition, there is no need for the management system to know about low-
level states, since the transition choice is already carried out by the internal manager.
Data is abstracted to a higher level and the management system only requires the
statechart's states in order to work. To allow this communication between the
managed component and the management system, we have once again the same two
possible models we used in section 2, namely push and pull models. Therefore, we
have added an external_pushed_sensor as a required interface to the managed
component, so that it can notify the management system of any state change. We have
also added an external_pulled_sensor for re-synchronization purposes in case of
communication breakdown. What we have described above is only the information
transferred from a running management session. A protocol for starting the process of
replication can be worked out, but it is out of the scope of this paper.

3.2 Control

The boundaries of control activity are hard to define because it is involved both in
business activity and management activity. Every application has its own control
logic and behavior, which coordinates its different functionalities. Control in manage-
ment interferes with this control logic to activate such or such functionality. In the
managed component, we have delegated the whole control responsibility to the intern-
al manager. Contrary to classical applications, in which the control logic is combined
with business functionalities, the behavior of our managed component is explicitly
defined in a statechart that is directly executed by the Statechart_monitor of its
internal manager. The latter in turn triggers the corresponding actions on its business

54 F. Romeo, F. Barbier, and J.-M. Bruel

component. This allows the internal manager to propose a specific interface to the
management system, the external_effector, in order to inflect the component's
behavior.

Our management system supports three types of control:

− control by event: an event corresponding to a request of service from the
component's functional interface is sent to the managed component. This is
equivalent to what could be done by a component's client.

− control by state: the managed component is forced into a specified state defined in
its statecharts. The control induced by the statechart’s transitions is bypassed to put
the component directly into the desired current state.

− control by action: it provokes the direct execution of an action in the business
component of the managed component without making any change in its current
behavior state.

4 Management of Compositions

In the previous two sections, we have seen how management is provided with abstract
knowledge of managed components' behavior through their internal managers. This
enables high-level management policies for an assembly of managed components,
which otherwise could not be taken into account by the internal managers themselves.
We first describe a special type of behavior composition used in component based
modeling. We then show a management policy for this type of composition that
maintains the consistency of the application's overall behavior at runtime.

4.1 Behavior Composition

In CBSE, a software system is considered as an assembly of components. The focus is
on practical reuse through the building of new solutions by combining external and
home made components. However, building systems from existing parts is known to
be a difficult task, especially due to architectural mismatching [19]. In order to
represent compound behaviors, Pazzi proposes the adoption of Part-Whole Statecharts
(PWS) [20]. In his proposal, compounds' (or parts') behaviors, which are specified by
statecharts, are composed through the parallel AND mechanism, which yields a global
automaton containing all the compounds' statecharts in different orthogonal regions.
An additional region representing the composite's (or the whole's) behavior is added
to this automaton. The composite controls its compounds by event sending, but is not
notified of its compounds' state change. This could lead to the desynchronization of
the composite's statecharts with regards to its compounds' statecharts. Pazzi deals with
the problem by obliging the encapsulation of the compoundss. But in [21]'s definition
of several forms of composition, the encapsulation property is not a systematic
characteristic of this relationship and thus the behavior of the compounds and the
composite can diverge. In the following part, we show an example of how a
management policy can detect this particular scenario and automatically handle it.

 Observability and Controllability of Wireless Software Components 55

4.2 A Management Policy to Ensure Rigorous Behavior Composition

Let's consider a traffic light component made up of
three light components, a red, a yellow and a green
one. These components are involved in a relationship
where the traffic light is the composite and the lights
are the compounds. All the lights have the same
behavior, which has two states, On and Off, as
represented by the state-chart of Figure 4.

The behavior of the traffic light is depicted by the
statechart of Figure 5. It is composed of three main
states Red, Yellow, and Green, and is set to Red by means of the Start state. When a
transition is triggered, it sends signals (notation: ^component.signal) to switch on or
off appropriate lights in order to light only the correct light named by the state that
has been reached by the transition.

TrafficLight

Start
entry: goRed Red

Yellow

Green

goRed/
^RedLight.turnOn

goGreen/
^GreenLight.turnOn,
^RedLight.turnOff

goYellow/^YellowLight.turnOn,
^GreenLight.turnOff

goRed/^RedLight.turnOn,
^YellowLight.turnOff

Fig. 5. Traffic Light Behavior

Specified like this, the system works well as long as the control of the compounds
only comes from the traffic light component, the composite. Indeed, if for any reason,
such as an unforeseen event, a hack attack, or a management operation, a light
changes its state without the traffic light that initiated it, the behaviors of the
composite and its compounds would be desynchronized. This is an illustration of the
previously described problem.

To handle this situation, we build, thanks to our framework, these four components
as managed components executing the statecharts of Figures 4 and 5. Then we build
their corresponding external managers, which replicate the statecharts of the
components and allow to control them through the management system. This is
depicted with the orthogonal states Monitor and Control in the managers' behavior
specification of Figures 6 and 7.

This allows us to define a management policy in the management system based on
the informations provided by these managers. The idea is to specify composite's states
as abstract states that belong to a subset of the Cartesian product of the compounds'
states. In our example, the traffic light is composed of three lights and the behavior of
each light is composed of two states. The Cartesian product yields 23 states and only

On Off

Light
turnOff

turnOn

Fig. 4. The Light's Behavior

56 F. Romeo, F. Barbier, and J.-M. Bruel

three are defined for the traffic light, namely red light on only, yellow light on only
and green light on only. Other states, in which more than one light are on, are
undefined for the traffic light. The next table summarizes this situation.

Table 1. States mapping between composite and components

Components Valid States
RedLight On Off Off
YellowLight Off On Off
GreenLight Off Off On
TrafficLight Red Yellow Green

Hence, the composition between the traffic light and its lights can be qualified by
two states, Defined or Undefined, depending on whether the states of the lights reflect
a valid state for the traffic light or not (see valid_state_guard in Figure 6). The
Undefined state indicates to the management system that the assembly of components
is in a state that has not been designed. It has to be handled manually or
autonomically by another management policy, which could reset all the components
in a proper state for instance. If the compounds are in a defined state for the
composition, the manager of the composite checks if its managed component is
synchronized with this state. If not, the manager autonomically sets the composite to
the corresponding state (see consistency_guard in Figure 6).

CompositeManager

Monitor

Control

state_changed(transition)

to_state(state)
/ ^managed.to_state(state)

execute(action) / ^managed.execute(action)

part_state_changed
[not valid_state_guard]

Undefined
State

Composition

Defined
State

Composition

part_state_changed
/ ^self.check
[valid_state_guard]

check
/ ^self.to_state(state)
[consistency_guard]

in(state) / ^managed.in(state)

valid_state_guard: (RedLight.in(On) ⁄ YellowLight.in(Off) ⁄ GreenLight.in(Off))

 ¤ (RedLight.in(Off) ⁄ YellowLight.in(On) ⁄ GreenLight.in(Off))
 ¤ (RedLight.in(Off) ⁄ YellowLight.in(Off) ⁄ GreenLight.in(On))

consistency_guard:
(state = Red) fl (managed.in(Red) fl (RedLight.in(On) ⁄ YellowLight.in(Off) ⁄ GreenLight.in(Off))
¤
(state = Yellow) fl (managed.in(Yellow) fl (RedLight.in(Off) ⁄ YellowLight.in(On)
⁄ GreenLight.in(Off))
¤
(state = Green) fl (managed.in(Green) fl (RedLight.in(Off) ⁄ YellowLight.in(Off) ⁄ GreenLight.in(On))

Fig. 6. Composite Manager's Behavior

 Observability and Controllability of Wireless Software Components 57

PartManager

Monitor
state_changed(transition)
/ ^CompositeManager.part_state_changed

in(state) / ^managed.in(state)

Control to_state(state) / ^managed.to_state(state)

execute(action) / ^managed.execute(action)

Fig. 7. Compound Manager's Behavior

5 Implementation

The implementation of the presented infrastructure is named WMX, which stands for
Wireless Management Extensions. It has to be seen in as an overall effort to
rigorously develop component-based complex systems. WMX is part of a framework
dedicated to the development of autonomic component-based applications. It is based
on a Java library that enables the execution of Harel's Statecharts: the PauWare library
[16]. In WMX, both internal and external managers are built on top of this library:
internal managers use the J2ME version, called Velcro, and external managers use the
J2SE standard version. Communications between these components have been
generalized and they are delegated to specific adapters, which support the chosen
wireless technologies (Wifi, Bluetooth, WMA, ...). The overall management system
relies on the management standard JMX and thus can be incorporated into existing
JMX-compliant management solutions.

5.1 Wireless Software Components

WMX provides the necessary facilities to directly implement managed components as
specified in Figure 1. From a design viewpoint, this simply leads to extending the
WMX_component class provided by WMX and to incorporating the statecharts
controling its behavior by using the Velcro library. Here is the code of the Light
component in Figure 4 (the code is incomplete):

public class Light extends WMX_component {
 protected AbstractStatechart _On;
 protected AbstractStatechart _Off;
 protected AbstractStatechart_monitor _Light;
 public Light() throws Statechart_exception {
 // init states
 _On = new VelcroStatechart("On");
 _Off = new VelcroStatechart("Off");
 _Off.inputState();

58 F. Romeo, F. Barbier, and J.-M. Bruel

 _Light = new VelcroStatechart_monitor(
 _On.xor(_Off),"Light");
 registerStatechart_monitor(_Light);
 // init transitions
 _Light.fires("turnOn",_Off,_On,[...]);
 _Light.fires("turnOff",_On,_Off,[...]);
 }
 [...]
}

In the above code, Light is composed of On and Off states using the XOR operator

and it is declared as a statechart monitor, which is the access point to the overall
statechart of the Light component. The registerStatechart_monitor method (in bold
print), which is a member of WMX_component class, effectively registers the
statechart monitor to be used for management purposes. Then all the management
communication matters are automatically handled by the WMX_component.

Events in the statecharts are implemented as method calls which notify the
statechart monitor to start a run-to-completion process to execute eligible transitions:

public void turnOn() throws Statechart_exception {
 _Light.run_to_completion("turnOn");
}
public void turnOff() throws Statechart_exception {
 _Light.run_to_completion("turnOff");
}

When declaring a transition between states with the fires method, it is possible to
specify a guard that will have to be satisfied in order to trigger the transition and an
action to be performed when the transition is actually triggered. Here is the signature
of the fires method:

public void fires(java.lang.String event,
 AbstractStatechart from,
 AbstractStatechart to,
 boolean guard,
 java.lang.Object object,
 java.lang.String action,
 java.lang.Object[] args)
 throws Statechart_transition_based_exception

In the above signature, it is important to notice that the object in charge of the
execution of the action can be specified. In this way, components deployed in the
same JVM and can communicate asynchronously through their statechart monitors.

5.2 Wireless Management Communication and Remote Management System

In our proposition, the statechart of a managed component deployed on a wireless
device is replicated and kept up to date in its remote management system. The
replicated statechart is also implemented by using the PauWare library, but only the
states of the original statechart are duplicated; not the transitions. The triggered
transitions are directly forwarded by the managed component and there is no event
processing to execute the eligible transitions.

In WMX, management communication is done through Wireless Communicators
which target specific wireless networks such as WiFi, Bluetooth, or WMA (SMS) for
instance. Like this, depending on the available network, one can choose to connect

 Observability and Controllability of Wireless Software Components 59

such or such communicator to one's managed component and corresponding manager.
Of course our framework depends on the reliability of the wireless network that is
used. However in our current implementation, even if communications are
temporarily broken, the management system will eventually be updated since our
statecharts support asynchronous communications. Moreover, we have deployed the
TrafficLight case study on a PDA, which is an HP iPAQ hx4700 embedding J9 Java
virtual machine from IBM, using Wifi and the application goes perfectly well, as long
as the device remains within the network range. And if it loses connection for a
moment the management system restarts in the current state of the managed
component.

Lastly, managers in WMX are implemented as MBean in order to be accessible
through JMX, which is the standard for management in the Java Platform. Thus,
WMX components are manageable through common management systems such as
the JMX console or even through a simple web page by using the JDMK HTML
adaptor.

6 Performance Issues

In order to evaluate our framework, we employ a benchmark to quantify the execu-
tion time overhead per state change. For our purpose, iterations of 100000 state
changes are performed on different test components. Table 2 reports the results from
this experiment on our test system: a Pentium M 1,6GHz processor with 512 Mo of
RAM running Java 1.5 on Windows XP. We chose this system over a handheld
device in order to compare WMX with JMX, which can not be run on Java ME.
Moreover, this choice also allows us to quantify the cost of the adaptation of PauWare
for wireless systems in Velcro.

At first glance the results show that PauWare is twice heavier than JMX, but this is
acceptable when considering that the State Machine engine performs a lot more
controls than JMX. Moreover, the performances of Pauware are improved by the use
of cached transitions: the transitions that are not dynamically resolved at runtime can

Table 2. Benchmarks

Implementation Benchmark Overhead per state change
Pure Java 2 ms 0 μs
Java + reflect API 14 ms 0,12 μs
JMX (internal access) 721ms 7,19 μs
PauWare (w/o cache) 1491 ms 14,89 μs
PauWare (w cache) 1027 ms 10,25 μs
Velcro (w/o cache) 1529 ms 15,27 μs
Velcro (w cache) 1038 ms 10,36 μs

Following implementations include I/O or networking
Pure Java + System.out.print() 2584 ms 25,82 μs
WMX (velcro + sockets) 3893 ms 38,91 μs
JMX + RMI connector 22077ms 220,75 μs

60 F. Romeo, F. Barbier, and J.-M. Bruel

be statically defined once and for all. Another interesting result is that the adaptations
made in Velcro to render the State Machine engine compliant with Java ME do not
much affect the performance.

At last in more realistic situations, i.e. when the management involves logging or
networking, WMX is only 50 percent slower than a simple log console (Pure Java +
System.out.print()) and it clearly outperforms JMX used with an RMI connector.

7 Conclusion

In this paper, we have presented a management system for software components
deployed in wireless embedded systems. The solution focuses on the management of
model-driven behaviors. To that end, we have introduced internal managers which are
responsible for observing and controlling managed component behaviors. Thanks to
these wireless-side managers, we have shown how the global management system is
organized. More precisely, we have illustrated the exchanges flows induced by
management activities. Then, we have described an example of management policy
based on a particular type of composition. Finally, performances issues were briefly
evoked.

At this time, we have experimented and validated our approach by a prototype run-
ning on real devices (PDAs especially). The wireless management side is obviously
based on J2ME and PauWare (the support for executable UML 2 State Machine
Diagrams). As for the global implementation of the prototype, we have kept JMX on
the non-wireless side in order to take advantage of all of the features of this standard.
Our existing implementation is not bound to any specific running environment or
component model. We on purpose are currently investigating the OSGi platform
which has become highly used in wireless systems.

We are also currently working on “autonomous” management policies that might
rely on our system to make management activities more and more autonomic. Clearly,
self-healing for instance, a kind of fault recovery mechanism, might take advantage of
rolling back state machines to stable consistent configurations when abnormal
situations exist or persist. Self-configuration may also be more easily and more
straightforwardly instrumented by forcing states of components.

References

1. Wallnau, K.C.: Volume III: A Technology for Predictable Assembly from Certifiable
Components. Technical report, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, USA (2003)

2. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Component
Model for Consumer Electronics Software. Computer 33(3), 78–85 (2000)

3. Winter, M., Genssler, T., Christoph, A., Nierstrasz, O., Ducasse, S., Wuyts, R., Arvalo, G.,
Mller, P., Stich, C., Schnhage, B.: Components for Embedded Software – The PECOS
Approach. In: Second International Workshop on Composition Languages. In conjunction
with 16th European Conference on Object-Oriented Programming (ECOOP), Malaga,
Spain (2002)

 Observability and Controllability of Wireless Software Components 61

4. Cervantes, H., Hall, R.S.: Beanome: A Component Model for the OSGi Framework. In:
Proceedings of the Workshop on Software Infrastructures for Component-Based
Applications on Consumer Devices, Lausanne, Switzerland (2000)

5. Desertot, M., Cervantes, H., Donsez, D.: FROGi: Fractal components deployment over
OSGi. In: 5th International Symposium on Software Composition SC’06, Vienna, Austria
(2006)

6. Crnkovic, I.: Component-based Software Engineering for Embedded Systems. In:
International Conference on Software engineering, St. Luis, USA, ACM, New York
(2005)

7. Möller, A., Fröberg, J., Nolin, M.: Industrial Requirements on Component Technologies
for Embedded Systems. In: International Symposium on Component-Based Software
Engineering, Edinburgh, Scotland, Springer Verlag, Heidelberg (2004)

8. Kephart, J., Chess, D.: The Vision of Autonomic Computing. In: Computer Magazine,
vol. 36, pp. 41–50. IEEE Computer Society, Washington, DC (2003)

9. Romeo, F.: WMX, http://www.univ-pau.fr/ fromeo/wmx
10. Kreger, H., Harold, W., Williamson, L.: Java and JMX. Addison Wesley, London (2003)
11. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Computer

Programming 8(3), 231–274 (1987)
12. Grieskamp, W., Heisel, M., Dörr, H.: Specifying Embedded Systems with Statecharts and

Z: An Agenda for Cyclic Software Components. In: Astesiano, E. (ed.) ETAPS 1998 and
FASE 1998. LNCS, vol. 1382, pp. 88–115. Springer, Heidelberg (1998)

13. Buzato, L.E.: Management of Object-Oriented Action-Based Distributed Programs. PhD
thesis, University of Newcastle upon Tyne (1994)

14. Kopetz, H., Suri, N.: Compositional design of RT systems: A conceptual basis for
specification of linking interfaces. In: 6th IEEE International Symposium on Object-
oriented Real-Time Distributed Computing, Hokkaido, Japan (2003)

15. Lau, K.K., Elizondo, P.V., Wang, Z.: Exogenous Connectors for Software Components.
In: Eighth International SIGSOFT Symposium on Component-based Software
Engineering, Springer, Heidelberg (2005)

16. Romeo, F., Ballagny, C., Barbier, F.: PauWare : un modèle de composant basé état. In:
Journées Composants, Canet en Roussillon, France, pp. 1–10 (2006)

17. Martin-Flatin, J.P.: Push vs. Pull in Web-Based Network Management. In: Proc. 6th
IFIP/IEEE Intl. Symposium on Integrated Network Management (IM’99), Boston, MA,
pp. 3–18 (1999)

18. Romeo, F., Barbier, F.: Management of Wireless Software Components. In: The 10th
International Workshop on Component-Oriented Programming in the 19th European
Conference on Object-Oriented Programming, Glasgow, Scotland (2005)

19. Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch or Why it’s hard to build
systems out of existing parts. In: 17th International Conference on Software Enginneering,
Seattle, Washington, ACM SIGSOFT, pp. 179–185 (1995)

20. Pazzi, L.: Part-Whole Statecharts for the Explicit Representation of Compound Behaviors.
In: UML, pp. 541–555 (2000)

21. Barbier, F., Henderson-Sellers, B., Parc, A.L., Bruel, J.M.: Formalization of the Whole-
Part Relationship in the Unied Modeling Language. IEEE Trans. Software Eng. 29(5),
459–470 (2003)

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 62–75, 2007.
© IFIP International Federation for Information Processing 2007

Service Level Agreement Management
in Federated Virtual Organizations

Tuomas Nurmela1 and Lea Kutvonen2

1 Tietoenator Processing & Network Oy, Espoo, Finland
Tuomas.Nurmela@tietoenator.com

2 Department of Computer Science, University of Helsinki, Finland
Lea.Kutvonen@cs.helsinki.fi

Abstract. The present emergence of loosely-coupled, inter-enterprise
collaboration, i.e., virtual organizations calls for new kind of middleware:
generic, common facilities for managing contract-governed collaborations and
the autonomous business services between which those collaborations are
formed. While further work is still needed on the functional governance of the
collaborations and services, even more work is awaiting on the management of
non-functional aspects of the virtual enterprises and their members. In this
paper, languages and architectures for service level agreement between Web
Services are discussed and the maturity of the service level management
solutions is reflected against the needs of federated virtual organizations.

Keywords: virtual organizations, Web Services, service level agreements.

1 Introduction

The present emergence of loosely-coupled, inter-enterprise collaboration, i.e., virtual
organizations calls for new kind of middleware: generic, common facilities for
managing contract-governed collaborations and the autonomous business services
between which those collaborations are formed. These facilities are required to
manage the collaboration lifecycle and interoperability at technical, semantic and
pragmatic levels. We call these facilities B2B middleware [1, 2].

While further work is still needed on the functional governance of the collaborations
and services, even more work is awaiting on the management of non-functional aspects
of the virtual enterprises and their members. In the category of non-functional aspects
three types of phenomenon can be seen: 1) policies and business rules that determine
pragmatic decision between alternative business processes or collaborations, 2) private
decision-making rules, for example determining trust relationships or quality of service
level satisfaction, that have effect on the collaboration memberships (or in breach
recovery actions at the collaboration level), and 3) non-functional aspects related to
communication between business services, including security, QoS, or other selectable
transparencies of the abstract communication channel.

 Service Level Agreement Management in Federated Virtual Organizations 63

As part of the work on refining the non-functional aspect management in
federated virtual organizations and in the Pilarcos architecture [2], we have
separately studied sub-architectures for multiparty eContracting [2], binding
between peers by federated, open channels, and trust management [1]. To
complement this theme, the present paper studies the management of service level
agreements, associated either to the communication architecture, or more
interestingly to the quality of peer services in the collaboration. The study addresses
adaptation to changes either at the organizational, local level, or in the operational
environment of the services by different type of runtime agreements on the service
level. The present trend on service level management enables the service markets to
move from basic cost-competition towards differentiation through variation of
service capabilities.

Service level management (SLM) [6] is the business process that contains all the
activities relating to service level agreements (SLAs, formally negotiated contracts)
and their management. In business environments, SLM as a process roughly contains
the activities of defining SLAs, negotiating SLAs (or buyer selection based on classes
of service), monitoring and evaluation of SLAs and managing breaches of SLAs.
SLM also contains the notion of reporting the results to the customer. This business-
centric approach can be seen as the central difference between thinking about
management of QoS contracts and management of SLAs.

As can be seen, the SLM process activities are nearly the same as for eContracting
process [2, 8]. However, the difference lies in the scope: in open, dynamic
environments, eContracting is required to negotiate and agree the common process
between collaborators (e.g. when forming a virtual breeding environment) and
between a virtual organization instance and customers when forming an external
contract and ensuring that what is agreed will be honored by all parties. Likewise,
issues such as capability to utilize support infrastructure in a federation is required.
However, in SLM, the focus is only on managing the SLA commitments.

The practical service level management approach complements the present work
on extended service-oriented architectures (SOA) [3, 4], also taking into account
adaptation to heterogeneity and autonomy of partners [5]. On implementation level,
different research initiatives on Web Services QoS have approached the issue from
both performance-perspective and from non-functional aspects (NFA) perspective in
general. The approaches focus either on model-driven development (MDD) or policy-
expressions or runtime service management.

In this paper, languages and architectures for service level agreement between
Web Services are discussed and the maturity of the service level management
solutions is reflected against the needs of federated virtual organizations. After
presenting a frame of reference in Section 2, the paper surveys Web Service
languages that focus on the performance-perspective and in particular include service
level agreements (SLAs) and reflect the various architectures behind their
development and the SLM phase for which they support in Section 3. The maturity
and sufficiency of these approaches, reflected against the Pilarcos architecture design
principles, conclude the paper.

64 T. Nurmela and L. Kutvonen

2 Service Level Management

The discussion of service level management is dependent on the type and scope of
agreements as well as the agreement management lifecycle. In terms of different
types of SLAs [6], service providers typically create both internal SLAs and external
SLAs. Internal SLAs define the requirements between service producers.
Operational Level Agreements (OLAs) codify what is expected of different units
within the service provider company that offers the service to customers. If the
service provider utilizes a third party as sub-contractor to provide the service, an
underpinning contract (UC) is created between the third party and the provider.
External SLAs codify what is being offered to the external customer. A central tenant
is that internal SLAs relating to the service (whether OLAs and UCs) are more
stringent than external SLAs. SLAs contain among other things SLA parameters (e.g.
availability), with each having a service level objective (SLO), i.e. target value for
the given SLA parameter.

The different types of SLAs relate especially to organizational form, i.e. whether
the virtual organization is a temporary organizational structure like a consortium or a
more permanent structure such as a partnership [7]. The virtual organization in
practice requires means of either aggregating the SLAs to determine the composite
SLA for the whole service (offers-based approach) or using the external SLA in the
contractual agreement with the customer to make negotiation demands on the
potential members in the virtual organization (reverse-auctioning approach). The
latter assumes the service provider either takes the risk that fulfillment of service is
not really possible or uses an already existing virtual breeding environment as the
basis for negotiation, without having negotiated the details with participating
members.

Alternatively service providers could approach the issue as a risk management
scenario and include SLA breach-related monetary compensation to service pricing
without regard to actual requirements. However, intuitively this does not lead to long
customer relationships given that customer probably cannot negotiate the actual
financial loss as part of the breach management payoff.

SLA contract scope needs to be considered in addition to considering the different
roles that may be related to producing the service. The SLAs can either deal with
technical metrics or it can deal with business metrics as part of the eContract. Ideally
the technical metrics can be aggregated to business metrics. Yet the business metrics
are domain dependent. Therefore, the mapping is problematic.

Figure 1 describes a suggestion for minimal content in regard to different types of
SLA and eContracting. Possibility for separation of SLA management from the
eContracts provides benefits in terms of reuse and breadth of situations to which the
language can be applied. The separation of technical metrics from business metrics
supports system modularity. It also supports specification of third party roles in order
to manage a specific area of responsibility (e.g. monitoring and evaluation of purely
technical SLA parameters). This approach would benefit from indicating
dependencies between different metric types.

 Service Level Agreement Management in Federated Virtual Organizations 65

OLAs

External SLAs
and UCs

eContracts
… and
• Business Protocols
• Roles in business
process

• Business metrics … and
• Pricing
• Reporting

Agree on
• SLA parameters

and SLOs
• Monitoring
• Evaluation
• Breach management

Fig. 1. Minimal scope of contract content from SLM perspective

In addition to the contents of the agreements and the scope of content amongst the
involved parties, the service level management lifecycle has to be determined. In the
following, the steps of template design, SLA-enhanced process design, negotiation
and selection, monitoring, evaluation, breach and bonus management and reporting
are identified. The lifecycle is captured in Figure 2. This is loosely based on the ITIL
SLM process description [6] and the eContracting process [8].

SLA negotiation

SLA monitoring
and evaluation

SLA breach
and bonus

management

Static
View

Dynamic
view
(runtime)

SLA template
design

SLA-enhanced
process design

SLA-enhanced
process validation

(design/
publish time)

SLA selection

1 to N choice

SLA reporting

Fig. 2. Frame of reference for SLM

The SLA template design consists of defining the SLA elements, for example in
XML. If the SLA is to be negotiated, SLOs are dynamically established. Only SLA
parameters and parameter boundaries need to be defined. Alternatively, if a class of
service–approach is used, classes need to be defined. This means defining the SLA
parameters and the SLOs prior to offer of the service. The class of service approach is
beneficial in the sense that possible conflicting technical demands (e.g. minimal
latency but assured delivery) can be screened and will not need runtime resolution.
However, because customer specific requirements cannot be matched, it fits better to
environments focusing only on technical metrics. The template design is particularly
impacted by the SLA language design choices.

The SLA-enhanced process design relates to utilization of composite services:
SLAs may be involved at design time of the process (composite service), especially if
the process is private and therefore only internal SLAs are involved. SLA-enhanced
process design requires that process design tool supports SLAs.

After creation of the process, the SLA-enhanced process design may be validated
at design time or the time of publishing a Web Service. This requires extending the
type repository to include SLA validation support.

66 T. Nurmela and L. Kutvonen

At runtime, after deployment of service, the consumer either negotiates the
required SLOs or selects an appropriate class of service. In the case where services
are provided in an open market, it is possible that the Web Service consumer
participates in an auction for the best possible Web Service. This would require a
negotiation mechanism with support for multiparty negotiation. Alternative
approaches include the capability to select an identical service from each service
provider and only provide payment for the fastest [9]. In addition, the offered services
can be provider resource-constrained. In this case the negotiation may be may revolve
around multiple consumers competing in an auction for single provider resources.

As can be seen, the SLA determination can be modeled as a full-blown auction or
bargaining scenario. However, this is typically not required in practice, because of
SLA having limited scope. Likewise, the negotiation can be separated under a
separate negotiation protocol.

The monitoring of SLA parameters contains at least two issues. First, the
monitoring can be done either in-band or out-of-band. Second, the link between
monitoring and evaluation can be passive, reactive or proactive [8]. Out-of-band
monitoring, following a typical probe-approach, is suitable for performance metrics.
In-band monitoring on the other hand can be located on the service host providing
host or on a separate tier consisting of e.g. access control, message routing and XML
firewall protecting the service. Especially non-performance based metrics utilize in-
band monitoring. Passive monitoring link merely refers to logging monitoring data at
run time. Evaluation is done later as a separate action. Reactive monitoring link
provides the means for evaluation of SLO breaches for corrective actions. Proactive
monitoring link would support the use of internal thresholds prior to SLO breach and
actions that would try to ensure breach of SLO would not happen. Evaluation
therefore includes threshold evaluation in addition to SLO breach evaluation.

The evaluation of SLOs can be based on different modes, being event-based (with
e.g. schedules) or request-based. Likewise, it can support complete evaluation (i.e.
utilize all available monitoring data) or statistical evaluation (i.e. evaluate only a
sample of monitoring data). Evaluation accuracy is dependent on the monitoring data
sources: for an example, if availability data source consists of trouble tickets, a human
element is involved. On the other hand, in case of an end-to-end polling, frequency of
polling denotes the accuracy.

The SLA breach management governs SLO or proactive threshold breaches, i.e. it
is closely tied to the monitoring link. For example, with passive monitoring link,
breach management is typically done a posteriori by people. While little research on
automated breach management is available, intuitively this is done by consumer
and/or provider. Not all possible mechanisms fit the different monitoring link types
(reactive or proactive). Intuitively, a number of mechanisms are possible, including
the following:

• Using long-running transactions and their compensation mechanisms as part of the
breach management scenarios (provider, reactive monitoring link).

• Reselecting the class of service or renegotiating the SLA (consumer and or
provider, reactive monitoring link).

• Automatically or semi-automatically redesigning the process tasks (provider,
reactive monitoring link).

 Service Level Agreement Management in Federated Virtual Organizations 67

• Forcing the virtual organization to undergo an evolution to replace the
misbehaving member with another one (provider, reactive monitoring link).

• Making monetary compensation based on the sanctioning clauses of the SLA and
continuing business as usual (provider, reactive monitoring link).

• Reducing the reputation of the misbehaving member and continuing business as
usual (consumer and/or provider, reactive monitoring link).

Some additional mechanisms may be possible for systems considering only technical
metrics such as adapting platform configuration through workload managers or
deploying new servers or deploying new servers.

Few issues are worth noting. First, participation of other third party roles depends
on the mechanism. Secondly, the mechanisms above assume the relationship between
consumer and provider still remains valid. Alternatively the consumer may decide to
switch provider. Third, in case of failure due active coordinator node failure (i.e.
service aggregator, virtual organization coordinator), many of the approaches are
void. In this case possibly reliable messaging and local node self-healing and self-
management mechanisms could be utilized for avoidance of unnecessary breach
management.

SLA bonus management could provide additional monetary or reputation bonuses
based on over-performance of a member. If no bonus management is utilized,
degradation of service is a provider option, though this is suitable only in completely
automated services.

SLA reporting in all likelihood needs to provide both operational reporting and
management reporting. This is especially important for the next evolutions of
workflow systems, which suffered in comparison to ERPs due to lack of reporting
facilities [10].

3 SLA Languages and SLM Architectures

In the following, examples of different types of SLA languages and SLA architectures
behind them are discussed. The goal of the survey was to find existing candidates for
the SLA templates, negotiation and monitoring, as well as SLA post-processing in
federated virtual organizations. As the technical environment, the Pilarcos
architecture [1, 2] was used with the following points of interest.

The Pilarcos architecture provides for both the static and dynamic views of SLM
(see Figure 2). For the static view, service type definitions include attributes that form
part of the SLA template; other parts can be derived from the business network model
defining the topology of the collaboration providing the composite service in
question. For the dynamic view, each service provider registers its service offer that
contains the service interface description (including a process description) and its
service level offers and requirements that can be used in the selection and negotiation
phases. The negotiation is performed partially by a populator agent, that takes a
suggested business network model (defined in terms of service roles, interactions
between them, and nonfunctional requirements to be jointly filled by the
collaboration) and imports matching service offers to it. Further, the negotiation
continues by allowing each potential partner to review the proposed collaboration
structure and conditions gathered to the eContract. In this phase, privately held

68 T. Nurmela and L. Kutvonen

motivations for decision-making and preferences take effect, for example, trust-based
decisions can determine what kind of policy values become accepted, or whether a
collaboration is entered at all. For monitoring purposes there are two sources of NFA-
related rules. First, from the business network model itself, monitoring rules for
business-related aspects can be gathered – these can be expressed either in terms of
business concepts, associated to processes and thus multiple services at the same time,
or in terms of technical concepts in cases where no translation between business
concepts and technical concepts exist. Second, as a result of the negotiations, for each
role there is an associated service and functional and non-functional requirements
placed on that service alone.

Beyond the languages surveyed in this paper a number of others exist, including
those in the semantic Web Service arena (e.g. WSML/WSMO QoS extension [18])
and eContracting languages and systems extensions, such as Laura [19] extending
ebXML.

3.1 SLAng

SLAng [11, 12] was developed in University College London by deriving SLA
requirements from real world SLAs. SLAng approaches SLAs from service
management perspective, focusing on performance metrics and automation of system
management, a subset of service management. It focuses on utilization of SLAs in
support of model-driven development. No implementations using SLAng were found
during research for the paper.

SLAng main concepts are SLA metrics, SLA categories and responsibilities. SLA
metrics are part of the SLAng definition. The exact metrics depend on the domain of
SLA. For application service provider (ASP) domain, metrics are categorized to four
QoS characteristic groups: service backup, service monitoring, client performance
and operational QoS characteristics. SLA metrics are valid during a schedule, which
defines the contract period.

SLAs categories divide to vertical and horizontal SLAs. Vertical SLAs identify
different parts of a Web Service platform in order to establish internal SLAs between
them. This is intended to enforce behavior with network elements, databases,
middleware and application servers. Vertical SLAs include communications SLA
(between network element and host OS), hosting SLAs (between host OS and
application server), persistence SLAs (between host OS and database) and application
SLAs (between Web Services and applications servers).

Horizontal SLAs are used to establish SLAs between “same layer” elements (i.e. to
describe horizontal dependencies). Horizontal SLAs include networking SLAs
(between network elements), container SLAs (between application servers) and
service SLAs (between Web Services).

Responsibilities enable description of individual and mutual commitments. Client
and server responsibilities describe individual commitments. The approach supports
different WSDL message exchange patterns on service SLA level and enables inter-
composition of SLAs to take into account requirements on both members. Mutual
responsibilities are responsibilities that both members have agreed to. These can be
established with a separate negotiation mechanism. Mutual responsibilities can be

 Service Level Agreement Management in Federated Virtual Organizations 69

used to describe the compensation for a given SLO breach. Different types of
compensation descriptions are not yet part of SLAng.

SLAng focuses on complementing an abstract description of the behavioural model
of the service. Therefore, QoS is modeled as part of the application in Web Services
consumer and producer behaviour. The approach is supported by UML Profiles for
QoS have been defined by OMG [13]. Use of this for QoS modeling has been
discussed also by Pataricza, Balogh and Gönczy for both QoS performance and fault
tolerance modeling, validation and evaluation [14].

However, SLAng designers correctly note that in order to support validation from
type systems perspective, a number of extensions are required beyond application
QoS modeling. They advocate using UML and UML Profiles to model SLAng SLA
metrics, participants and participant behavior and defining SLAng constraints that
define the service level objectives through Object Constraint Language (OCL).
Currently available actual formal definitions limits to defining ASP reference model.

Researchers behind SLAng are proponents for MDD-based approach. SLAng
approach is for both design time validation support especially intra-service SLA and
monitoring and evaluation of runtime behavior between negotiated SLAs. Inter-
service SLA composition is also noted. However, much of this seems to be still in the
works as future work noted includes service composition and analysis toolkit and
incorporating the constraints to applications through code generation for runtime
evaluation. Likewise, the lack of negotiation mechanism description would indicate
that the issue is not currently addressed. Additional work noted includes
transformations from formal descriptions to a human-friendly business contract and
SLA document.

SLA metrics, categories and an MDD-approach provides a view to the design
principles behind SLAng usage in ASP domain: first the system management
environment is spliced to elements. After this, each of their QoS characteristic groups
and SLA metrics defined. This is followed by relationship definition. The assumption
is that after this, one can (i) validate that there are no mismatches and (ii) incorporate
the behavioral constraints to applications.

SLAng contains no support for breach and bonus management or service pricing.
These, with addition of reuse through SLA templates are also considered part of
future work for SLAng. Lack of dependency expression between different types of
SLA metrics is not addressed.

In terms of eContracting, SLAng is seen as the main mechanism to complement
BPEL with behavioral model all the way to eContracting requirements. However,
given that the language has to be extended to other domains beyond ASP and lacks
breach and bonus management support, the current approach seems insufficient for
virtual organization requirements.

3.2 Web Services Level Agreement

Web Services Level Agreement (WSLA) [15, 16] has been developed and prototyped
by IBM during 2000-2003. WSLA perceives SLAs for Web Services from a service
management perspective with narrow scope, implicitly focusing on providing a
customized SLA containing such as response time, availability and throughput.
WSLA is currently utilized in TrustCoM. TrustCoM [20] focuses on enabling

70 T. Nurmela and L. Kutvonen

dynamic virtual organizations through inclusion of security, trust relationships and
contracts. The SLA management subsystem is partitioned among participants. It
includes local SLA management services, which contain SLA monitoring and
management and a separate third party SLA evaluator service for actual SLA
evaluation. This uses the notification infrastructure to inform of violations, without
regard to the actual breach management mechanism. A separate negotiation
mechanism is used to establish the SLAs.

Main concepts of WSLA SLAs are parties, service definition and obligations.
These are utilized in WSLA templates and contracts, although neither of the terms is
part of the WSLA definition. Parties define the signing parties (Web Service
consumer and provider) and supporting parties (third parties). Third parties include
measurement (i.e. monitoring) providers, condition evaluators and management
providers (i.e. breach management handlers). The different participating parties
enable different contract types, related to composition of services. Likewise, although
the contract is for two parties, composition of contracts enables multi-party
fulfillment of SLA. This also means a contract can be split into multiple sub-
contracts.

Service definition defines the service (or group of services) and the SLA
parameters that relate to it. The SLA parameters support hierarchies. The foundation
is based on resource metrics (e.g. SNMP MIB counters), which is collected based on
a measurement directive. Multiple resource metrics can be aggregated to a composite
metrics according to some function, which is computed based on an interval defined
by a schedule. Composite metrics can be either directly mapped or aggregated to SLA
parameters which are defined by the Web Services consumer. SLA itself is
established through a separate negotiation mechanism outside the scope of WSLA.
The optimal end result would be that a single or group of SLA parameters would
reflect a business metric for the Web Service consumer. WSLA itself does not define
any QoS metrics but provides the XML elements to make the resource-based
definitions. It should be noted that while dependencies through aggregation of metrics
can be expressed, dependencies between SLA parameters cannot be expressed.

Obligations provide means to express service level objectives, which define the
party responsible, validity period and target values of SLA parameters. Obligations
also define action guarantees, which define service management actions (i.e. breach
management mechanism) to be done in case SLO is not achieved. Definitions for
workload manager resource management and service deployment are examples of
management actions, although these are not defined in WSLA. An evaluation event or
evaluation schedule provides information on evaluation condition.

WSLA template consists of two parts: first part provides a partially filled contract
that defines basic characteristics (e.g. who the parties are). Second part extends the
first with an “offer document”, which defines constraints for the template SLA
parameters. For an example, constraints can be used to define a range or list of
acceptable values for an SLA parameter to limit negotiation. While WSLA templates
are used to describe service offer through the negotiation process, they can be
reusable in a sense that a base template is used, which is only refined in the
negotiation process.

WSLA contracts emulate the technical part of business contracts. In order to make
them legal, a contracting framework utilizing WSLA must provide a separate

 Service Level Agreement Management in Federated Virtual Organizations 71

eContracting mechanism. WSLA contracts contain the SLA parameters and SLOs
formed based on the WSLA template offered to the consumer. Contract types depend
on parties involved and the contracting framework. This also defines service
composition support, which is not limited by the language itself, but can be difficult
to implement.

As an example, the following contract types are used in one implementation of
WSLA [16]: offers are WSLA templates that provider provides to consumer (i.e. they
are external SLAs). Usage contracts are realized contracts for a particular service by
a particular consumer. Provider contracts are aggregated SLAs by multiple providers
to enable one provider to represent others in a composite service or group of
independent services. Basic contracts provide the business contract part outside the
scope of WSLA.

WSLA contracts attach to Web Services by pointing to the WSDL description that
defines the services for WSLA contract is created for. No discussion is provided on
utilizing WSLA with UDDI directories, or consumer inquiry of WSLA composite
metrics without requesting actual service (i.e. metadata exchange). Presumably latter
is to be done with a separate management protocol.

WSLA is not tied to a particular eContracting language or mechanism and can be
used to supplement basic contract definitions. However, the underlying assumption is
that the business metrics can be defined by the Web Service consumer based on SLA
parameters.

WSLA provides means for expressing what is measured, by whom and how. It also
defines means to express actions based on breaches. Yet it does not provide
information on meaning of any of the third party functions regarding monitoring,
evaluation and breach management. These have to be separately defined. These
definitions impact the formality of the language: validation of WSLA-enhanced
process designs seems problematic even based on the basic language specification.
Likewise, clearly a comprehensive support infrastructure is required to provide a
suitable support for applications that wish to utilize WSLA.

3.3 Web Services Offerings Language

Web Services Offerings Language (WSOL) [17] has been developed and prototyped
in Ottawa-Carlton Institute of Electrical and Computer Engineering during 2001-
2005. WSOL perceives QoS for Web Services from a networking perspective,
extending this with “design by contract” –concepts. However, implicitly the focus is
on describing performance metrics. WSOL is utilized in Web Services Offerings
Infrastructure (WSOI). WSOI is basically an XML parser for checking WSOL
definition syntax correctness and a SOAP engine extension, which provides an in-
band monitoring and evaluation by using WSOI handlers for interception. Future
work includes WSOL code generator to create WSOI handlers from WSOL
definitions.

Main concepts of WSOL include the service offerings, constraints and
management statements. These are supported by reusability elements and service
offering dynamic relationships. Service offerings utilize a class of service –approach,
i.e. offerings (SLAs) describe different levels of service for the Web Services
consumer to select from. No negotiation mechanism is possible for either

72 T. Nurmela and L. Kutvonen

customization of SLAs or bidding in case multiple parties provide the same service
offer on an open market. The service offerings reusability is done through service
offering items, i.e. constraints, management statements and reusability elements.

Constraints express evaluated conditions, which can be behavioral, QoS and access
related. Behavioral constraints enable pre- and post-condition and invariant
expressions. Also “future-conditions” are expressible, i.e. conditions that surface after
some specific amount of time has passed from the service request. QoS constraints
describe QoS metrics and the monitoring entity. QoS metrics themselves are defined
by an external ontology. QoS metrics are evaluated with each service request.
Alternatively, “periodic QoS” can be expressed, whereby evaluation is done to
random requests. Only the average of evaluation is expressed. Access rights can be
related to service hours and number of invocations.

While overall the QoS approach seems to fit request-response WSDL message
exchange pattern (MEP), use with other WSDL MEPs are not discussed.

Management statements contain management information for different classes of
service. This includes price statements, monetary penalty statements and management
responsibility statements. Price statements divide to pay-per-use and subscription
payments. The pay-per-use payment supports default price and grouping of operations
to limit definition length. Subscription payments are intended to support time- based
billing. The payment statements are separate XML-schemas, alternative models, such
as volume pricing could be defined as an alternative XML schema. Monetary penalty
statements are the only supported breach management mechanism currently in
WSOL. WSOL implicitly assumes management parties will send notifications [17,
pp. 91]. Monetary units are defined in an external ontology. Management
responsibility statements specify role responsibilities for particular constraints,
supporting third trusted parties. No link to reputation services is provided to evaluate
the third parties.

Reusability elements are a central enabler in reusing the service offering items.
Basically it provides means to reuse service offering items by defining templates and
specializing these with parameter definitions. The approach supports specifying
different levels (e.g. groups of expressions, individual expressions) of reuse. Likewise
“applicability domains” enable scoping these in terms of WSDL. Constraints,
management statements and reusability elements are formally specified in UML.
Extension with ontologies to enable semantic validation is within scope of the
ongoing research work.

WSOL descriptions point to the WSDL file describing the operations. WSDL
extensions were considered but discarded. No discussion is provided on utilizing
WSOL with UDDI directories. WSOL information (i.e. metadata) can be requested
with a management protocol.

WSOL provides excellent means for dependency expressions by supporting both
static and dynamic relationships. Static relationships are expressed in service
offerings themselves. Service offerings can be created, updated or deleted after
deployment of service. However, given the performance focus of the design, these are
insufficient to accommodate runtime changes to a service that is utilized by a
consumer. WSOL uses service offering dynamic relations (SODRs) as means of
runtime adaptation by describing replacement of a particular service offering with
another particular service offering in case of a particular constraint violation.

 Service Level Agreement Management in Federated Virtual Organizations 73

Table 1. Comparison of Web-Services –related SLA-language initiatives

Attribute SLAng WSLA WSOL
Background and

approach

Service management,

Model-driven

development

Service management,

Runtime support

infrastructure

Network QoS,

Runtime support

infrastructure

SLM infrastructure or

toolset for language

Unknown TrustCoM Web Services Offerings

Infrastructure (WSOI)

Main concepts (Domain-specific) SLA

metrics, SLA categories,

responsibilities

Parties, service

definition, obligations

Service offerings

(SOs), constraints,

management statements

SLA verification Design-time validation

and run-time evaluation

Run-time evaluation Run-time evaluation

Association mechanism

to service descriptions

and service offers

Behavioural model SLA points to WSDL Service offering points

to WSDL

Reusability None currently WSLA templates Reusability elements

Denotations and formal

background

UML, UML profiles and

OCL

UML UML

Composition support

for aggregated services

Intra-composition and

inter-composition based

on conformance

Not constrained by

language, depends on

contracting

Not constrained by

language, seen as

problematic

Selection or negotiation

mechanisms and

multiparty aggregations

None currently, separate

negotiation protocol

intended

Separate negotiation

protocol, custom SLAs

Selection, predefined

classes of service

Pricing support None currently None currently Yes, in management

statements

Breach management

support

None currently Yes, in action

guarantees

Yes, in management

statements

Dependency

expressions between

SLAs and SLOs

None None SO dynamic

relationships

Relationship to

eContracting

Used with BPEL Aggregation of

technical metrics to

business metrics

Independent of

eContracting

Composition of WSOL service offerings is not currently addressed. This is a
problematic area given that the QoS metrics are defined by an external ontology.
Some preliminary work has been done in this area, but it has been noted that
“implementation of these mechanism to the management infrastructure would not be
trivial” [17, pp. 63].

Overall the language design leaves relationship to eContracting open: means for
legal binding of SLAs and using WSOL with business protocols remains an open
topic, possibly due to the background and scope of investigation.

3.4 Summary

In the survey, special attention was given on properties related to potential for
composing service and their SLA notions, whether the language was designed for the
static or dynamic environments, and their relationship to eContract structures. The
SLA languages are summarized in Table 1.

We note that at its current state SLAng is designed for development time
descriptions and, on service SLA level, is used to complement BPEL by expressing

74 T. Nurmela and L. Kutvonen

behavioral constraints. On the other hand, WSLA and WSOL focus on runtime
support in terms of negotiation or selection and evaluation of offers. However their
relationship to eContracting is different. WSLA assumes that Web Services consumer
can establish relationship to business metrics based on providers technical metrics,
whereas WSOL simply focuses on technical metrics without regard to eContracting.

4 Conclusions

Taking the reviews and the frame of reference into account the presented languages
all provide good approaches in specific areas. In particular, the SLAng level of
formality and client requirements provide support for design validation and service
inter-composition. This is in-line with populator requirements. Second, WSLA
provides a comprehensive conceptual frame and does not limit to particular metrics
even though it lacks means to express support of runtime dynamism. Third, the use of
WSLA in TrustCoM shows that modularity is achievable, potentially supporting
separation of evaluation and breach management mechanisms from local monitoring.
Finally, the WSOL service offering dynamic relationships provide means of pre-
defining runtime support for autonomous service adaptation.

In general, further development is needed on languages that provide better support
for NFA-related QoS beyond communications and technical QoS, support
composition of service offers, and allow expressions of monitoring rules to
complement the associated service level requirements.

As a conclusion, there is need for further developing a family of aspect languages
for NFAs with a number of requirements: Each language should have a sufficient set
of joint basic concepts so that aggregations can be negotiated over them in a sensible
way. Consequently, each broad category of business services has a separate set of
concepts and related metrics, so that these are understandable to the business process
designers in business terms. At the more technical level, it is required that each
concept and metrics has a supported transformation to technical terms in a transparent
way. Also, it is necessary that the technical level concepts and metrics are provided
for communication service business.

References

1. Kutvonen, L., Ruokolainen, T., Metso, J.: Interoperability middleware for federated
business services in web-Pilarcos. International Journal of Enterprise Information
Systems 3(1), 1–21 (2007)

2. Kutvonen, L., Metso, J., Ruohomaa, S.: From trading to eCommunity population:
Responding to social and contractual challenges. In: Proceedings of the 10th IEEE
International EDOC Conference (EDOC 2006), Hong Kong (October 2006)

3. Papazoglou, M.P.: Service oriented computing: concepts, characteristics and directions. In:
4th International Conference on Web Information Systems Engineering (WISE’03) (2003)

4. Papazoglou, M.P., Georgakopoulos, D.: Service oriented computing. Communications of
the ACM 46(10), 25–27 (2003)

5. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Sematincs, Processes, Agents.
John Wiley & Sons, New York, NY (2005)

 Service Level Agreement Management in Federated Virtual Organizations 75

6. OCG, ITIL Service Delivery, The Stationary Office (2001)
7. Camarinha-Matos, L.M., Afsarmanesh, H.: Virtual Enterprise Modeling and Support

Infrastructures: Applying Multi-agent System Approaches. In: Luck, M., et al. (eds.)
Multi-Agent Systems and Applications, ACAI 2001, LNAI 2086, pp. 335–364 (2001)

8. Milosevic, Z., Berry, A., Bond, A., Raymond, K.: Supporting business contracts in open
distributed systems. In: 2nd International Workshop on Services in Distributed and
Networked Environments (1995)

9. Ludwig, H.: Web Services QoS: External SLAs and Internal Policies, Or: How do we
deliver what we promise? IBM research center report (2003)

10. Cardosa, J., Bostrom, R.M., Sheth, A.: Workflow Management Systems and ERP
Systems: Differences, Commonalities, and Applications. In: Information Technology and
Management 5, pp. 319–338. Kluwer, Dordrecht (2004)

11. Skene, J., Lamanna, D.D., Emmerich, W.: Precise Service Level Agreements. In: 26th
International Conference on Software Engineering (ICSE’04) (2004)

12. Lamanna, D., Skene, J., Emmerich, W.: SLAng: A Language for Defining Service Level
Agreements. In: Proc. of the 9th IEEE Workshop on Future Trends in Distributed
Computing Systems, FTDCS 2003 (Puerto Rico, May 2003) (2003)

13. Object Management Group (OMG), UML profile for quality of service and fault tolerance
characteristics and metrics (2004)

14. Patarizca, A., Balogh, A., Göczy, L.: Verification and validation of Nonfunctional aspects
in Enterprise modeling. In: Rittgen, P. (ed.) Enterprise Modeling and Computing with
UML, Idea Group, pp. 261–303 (November 2006)

15. Ludwig, H., et al.: Web Service Level Agreement (WSLA) Language Specification,
Version 1.0, revision wsla-2003/01/28. available from: www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf

16. Dan, A., et al.: Web Services on demand: WSLA-driven automated management. IBM
systems journal 43(1), 136–158 (2004)

17. Tosic, V.: Service Offerings for XML Web Services and Their Management Applications,
PhD Thesis, Carleton University, Department of Systems and Computer Engineering
(August 2004)

18. Toma, I., Foxvog, D., Jaeger, M.C.: Modelling QoS characteristics in WSMO. In:
Proceedings of the 1st workshop on Middleware for Service Oriented Computing
(MW4SOC 2006), Australia (November 27–December 01, 2006)

19. Svirskas, A., Roberts, B.: Towards business QoS in Virtual Organizations through SLA
and ebXML. In: 10th ISPE International Conference on concurrent engineering: Research
and Applications (2003)

20. TrustCoM, TrustCoM Reference Architecture, Version 1, Deliverable D09, Work package
27 (14.8.2005)

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 76–89, 2007.
© IFIP International Federation for Information Processing 2007

Construction and Execution of Adaptable Applications
Using an Aspect-Oriented and Model Driven Approach

Sten A. Lundesgaard1, Arnor Solberg2,*, Jon Oldevik2, Robert France3,
Jan Øyvind Aagedal2, and Frank Eliassen1

1 Simula Research Laboratory, Network and Distributed Systems,
P.O. Box 134, N-1325 Lysaker, Norway
{stena, frank}@simula.no

2 SINTEF, ICT,
P.O. Box 124, N-0314 Oslo, Norway

{arnor.solberg, jon.oldevik, jan.aagedal}@sintef.no
3 Colorado State University,

Fort Collins, CO-80532, USA
france@cs.colostate.edu

Abstract. Constructing and executing distributed applications that can adapt to
their current operating context, in order to maintain or enhance Quality of Ser-
vice (QoS) attribute levels, are complex tasks. Managing multiple, interacting
QoS features is particularly difficult since these features tend to be distributed
across the system and tangled with other features. The crosscutting nature of
QoS features can make them difficult to evolve, and it can make it complicated
to dynamically optimize with respect to provided QoS during execution. Fur-
thermore, it complicates efficient construction of application variants that differ
in their QoS characteristics to suit various execution contexts. This paper pre-
sents an aspect-oriented and model driven approach for constructing and a QoS-
aware middleware for execution of QoS-sensitive applications. Aspect-oriented
modeling techniques are used to separate QoS features from primary applica-
tion logic, and for efficient specification of alternative application variants.
Model driven engineering techniques are used to derive run-time representa-
tions of application variants from platform independent models. The developed
middleware chooses the best variant according to the current operating context
and the available resources.

1 Introduction

Distributed systems often execute in heterogeneous environments, in which the avail-
ability of resources such as bandwidth, memory, and computing power change over
time. The increasing mobility and pervasiveness of computing systems require the
consideration of the dynamic environment, when building suitable QoS features for
maintaining desired QoS. Adaptive middleware addresses these challenges. It per-
forms run-time configuration and adaptation by choosing between alternative applica-
tion variants with similar functional properties but different QoS characteristics and

* Two first authors are in alphabetical order.

 Construction and Execution of Adaptable Applications 77

resource demands. Criteria for choosing an application variant are generally based on
the context [1] or QoS characteristics [2][3].

Many concerns need to be considered when constructing alternative application
variants, e.g., QoS preferences, context dependencies, and resource allocation. To
manage this complexity, separation of concerns and support for defining and using
suitable abstractions are needed. In Model Driven Engineering (MDE), abstractions
and transformations between levels are used to manage complexity. For example, the
Model Driven Architecture (MDA) [4] specifies three abstraction levels; a Computa-
tion Independent Model (CIM) describes the environment and specifies requirements;
a Platform Independent Model (PIM) describes the parts that do not change from one
platform to another; and a Platform Specific Model (PSM) includes descriptions of
platform dependent parts. To further control the complexity of developing application
variants that have similar functionality but differ in their QoS characteristics, mecha-
nisms for separating crosscutting QoS features from the primary application logic are
needed. Examples of QoS characteristics are security, integrity, robustness, and per-
formance. Examples of corresponding QoS features are authentication, transaction
control, error handling, and compression. Aspect-Oriented Software Development
(AOSD) approaches [5]-[8] provide mechanisms for encapsulating crosscutting fea-
tures. In the Aspect Oriented Modeling (AOM) approach presented in [8], crosscut-
ting features are modeled as aspects and composed with the primary design model, to
form integrated models.

This paper presents an approach for Construction and Execution of Adaptable ap-
plications (CEA-Frame). CEA-Frame integrates MDE and AOM techniques to model
application variants in platform-independent terms and to automatically transform
PIMs to PSMs. QoS features are separated from the primary functionality as aspect
models and designed to fit particular operating contexts. For the execution we have
developed a context- and QoS-aware dynamic middleware named QuAMobile, which
identifies and chooses the application variant that is considered best for the current
context and available resources. The alternative application variants are deployed
using platform independent specifications, called service plans [11].

The separation of concern mechanisms in CEA-Frame improve the reusability of
both design- and run-time artifacts through application-independent models of cross-
cutting QoS-features, and service plan specifications that separate meta-data from
implementation code. Furthermore, modeling the QoS features separately in aspect
models enables efficient representation of QoS variability from which a large number
of application variants can be derived. The MDE based transformations make the
transition from PIMs to PSMs faster, smoother and less error prone.

Sect. 2 presents the integrated construction and execution concepts, mechanisms
and activities of CEA-Frame. In Sect. 3 the CEA-Frame is illustrated and validated
using a live media streaming application example. Sect. 4 discusses related work.
Sect. 5 draws some conclusions and outlines future work.

2 Construction and Execution of Adaptable Applications

CEA-Frame (Fig. 1) provides: i) methods for specification of application variants
combining model driven and aspect-oriented modeling techniques, ii) mappings

78 S.A. Lundesgaard et al.

Fig. 1. Overview CEA-Frame

generating platform level constructs from platform independent specifications, and iii)
a QoS-aware planning and adaptation supplied by the QuAMobile middleware.

At the platform independent level, a primary model and a set of aspect models
are developed. Alternative application variants are obtained based on the following
two mechanisms: i) compositions are used to derive application variants by com-
posing the primary model with different subsets of the aspect models, and ii) vari-
ants of aspect models and primary models are described by means of model-based
variability mechanisms such as specialization and parameterization. From the PIMs,
service types in the form of Web-Service Description Language (WSDL) files and
XML-based service plans are generated by our transformation engine. These map-
pings are implemented using the MOFScript Eclipse plug-in [10]. At the platform
specific level, the QoS-aware planning process (in QuAMobile) uses the deployed
service types and service plans to select the application variant that is considered
best for the current context in order to meet the user’s QoS preferences. This also
includes checking context dependencies (e.g., run-time environment, communica-
tion technology, and storage facility dependencies), and predicting the end-to-end
QoS according to the available resources (e.g., processing load, data rate and mem-
ory usage).

2.1 The Conceptual Service Model

The CEA-Frame defines service, service type, and service plan as central architectural
concepts (see Fig. 2). A service type can be composed from a set of service types. An
application type is a service type. Services realize service types and their meta-
information is specified in service plans. Consequently, there may be different service
plans for a service type. Services can be atomic or composite. Accordingly, there are
atomic and composite plans. An atomic plan describes an atomic service, while a
composite plan recursively describes a composite service by specifying the involved
service types and the connections between them. In addition, both types of service
plans contains: i) information about dependencies to context elements, ii) specifica-
tion of the parameter configurations and iii) specification of the QoS characteristics.
These are vital information for the QoS-aware planning and adaptation. It is tedious to

 Construction and Execution of Adaptable Applications 79

Fig. 2. The service and service plan concepts of CEA-Frame

develop the service plans manually, because many alternative application variants are
required to support the different operating contexts of the application. In CEA-Frame
the service plans are automatically generated from the more abstract PIMs. Service
plans are further elaborated in [11].

2.2 Constructing Application Variants

The basis for the modeling in CEA-Frame is our Aspect-Oriented Model Driven
Framework (AOMDF) [12], which combines aspect-oriented and model driven tech-
niques to separate both vertical concerns such as technical platform, and user defined
crosscutting concerns such as QoS. CEA-Frame extends AOMDF to support con-
struction and execution of QoS-aware adaptable applications.

A design is expressed in terms of the following artifacts [7]: i) the primary model
(PM) describes the application logic; ii) the aspect models (AM) describe crosscutting
QoS features; iii) the bindings define where in the primary model the aspect models
should be composed; and iv) the composition directives govern how aspect models
are composed with primary models.

Before an aspect model can be composed with a primary model in an application
domain, the aspect model must be instantiated in the context of the same application
domain. An instantiation is obtained by binding elements in the aspect model to ele-
ments in the application domain. The result is called a context-specific aspect model.
Context-specific aspect models and the primary model are composed to obtain an
integrated design view [8]. Fig. 3 shows the modeling and mapping activities when
constructing alternative application variants using CEA-Frame.

Starting at the platform independent level, the primary model is specified. Vari-
ability is specified using variability mechanisms provided in UML such as speciali-
zation, templates and multiplicity (e.g., “0..1” for optional elements). Then, QoS
features are specified in aspect models. In our approach aspect models are reusable
patterns that describe application specific QoS features when instantiated. In the
composition, the aspects models are instantiated and composed with the primary
model. An aspect model is instantiated by binding template parameters to actual
values.

80 S.A. Lundesgaard et al.

Fig. 3. CEA-Frame modeling and mapping activities

2.3 Execution of Adaptable Applications

In our implementation of CEA-Frame the distributed dynamic middleware QuAMobile
and the Java virtual machine constitute the execution environment. QuAMobile im-
plements a plug-in architecture for inserting domain specific managers: service plan-
ner, context manager, resource manager, configuration manager, and adaptation
manager as depicted in Fig. 4. Service types and plans are interpreted during deploy-
ment using the Java Document Object Model (JDOM) open source parser. Service
implementations reside in the repository, while service types and plans are published to
the broker. During executing, service types and plans represent the meta-level model
of the running application. This model is causally connected to the application, that is,
any changes made to the meta-level causes corresponding changes in the application.

Fig. 4. QuAMobile core architecture

In dynamic heterogonous environments QoS guarantees can not be made. Instead
QuAMobile re-plans and adapts the applications to meet the changes in context and
resource availability. In the middleware the two plug-ins service planner and adapta-
tion manager performs QoS-aware planning and adaptation. Service planning is a
process that identifies suitable application variants for the context in which the appli-
cation shall execute and choose the one that is considered most optimal with respect
to the user’s QoS preferences. The planning commences when the user (i.e., client
software) submits a service request with user QoS preferences in the form of utility
functions to the platform. In CEA-Frame, utility is a measure of usefulness and is

 Construction and Execution of Adaptable Applications 81

expressed by a real number in the range [0, 1], where 0 represents useless and 1 repre-
sents as good as perfect. Service planning is a four step process starting with i) identi-
fying all the alternative application variants, ii) context dependency filtering, iii) QoS
prediction, and iv) choosing the best suited variant according to the specified utility
functions.

The adaptation mechanisms operate on a meta-level, where the service types and
service plans are used for reasoning and altering the running application. When
changes in the context are detected, i.e., there is updated context and resource infor-
mation available, the service planner performs a re-planning of the running applica-
tion. If another application variant matches the user’s QoS preferences better, the
middleware adapts the application. First, existing plans that constitute the meta-model
of the running application are made available (reification). Then components involved
in the adaptation are pushed to a safe-state (if this state is reachable), and changes are
made to the meta-model. Lastly, the changes are absorbed by the application. Fig. 5
shows the activities involved in the execution of an adaptable application, and is a
detailing of the planning and adaptation activity of Fig. 3.

Fig. 5. Planning and adaptation activities

3 Illustrative Example

This section illustrates the CEA-Frame by describing the construction and execution
of a live media streaming system. The system captures events (e.g., news and sports),
encode onsite, and forward the media stream to streaming servers that the users access
over the Internet (see Fig. 6). Users are mobile, and switch from Local Area Network
(LAN) to a Wireless LAN (WLAN), and between WLAN subnets.

3.1 Modeling and Mapping

The illustrative example of the modeling and mapping process is structured according
to the CEA-Frame activities depicted in Fig. 3.

Specify Primary Model and Primary Model Variants. The application level com-
posite structure of the media streaming primary model is shown in Fig. 6.

SgnlCommunication initiates and controls the media stream on request from the
MediaPlayer. LiveMediaSrc provides the video images, and MediaStrmService sends
the stream to MediaPlayer through the StrmCommunication service. These services

82 S.A. Lundesgaard et al.

Fig. 6. Live media streaming system, application level composite structure

are all composite. In this example we will look into details of the StrmCommunication
service and its variants (Fig. 7). This service has both alternative compositions and
parameter configurations from which variants are derived, high-lightening variability
mechanisms and variant derivation provided in CEA-Frame.

c)

a)

b)

Fig. 7. a) primary model of StrmCommunication and b) variations of types

The types of the parts contained in the general StrmCommunication (Fig. 7a) are
abstract and represent variation points. Possible variations of these types can be repre-
sented as a specialization hierarchy as shown in Fig. 7b. Here the allowed specializa-
tions for the encoder and decoder are MPEG-4 and H.262, and the allowed transport
protocols are RTP and RTP_TFRC. Fig. 7c shows two of the four possible variants
for this case. The dependency relationships in the specialization hierarchy ensure
compliance for the source and sink of a particular variant.

Specify Aspect Models and Aspect Model variants. QoS features are specified in
aspect models. For wireless communication bit errors represent an inherent problem.
To ensure a satisfactory video quality, Forward Error Correction (FEC) algorithms
can be used to minimize the effect of bit errors. Also, due to the handover and roam-
ing between WLAN sub-nets, pre-fetching (using a buffer) can be used to reduce
jitter. To improve smoothness and timeliness of the video when streaming over
WLAN, the two aspect models depicted in Fig. 8a and Fig. 8b are specified.

 Construction and Execution of Adaptable Applications 83

b)a)

c)

Fig. 8. Aspect Models a) error correction, b) pre-fetching, and c) allowed values

The aspect models are parameterized. The allowedValues stereotype is used to
specify the values of these parameters for the particular application (Fig. 8c). For the
ErrorCorrection and Buffer aspects, parameters that must be specified are buffer
sizes, symbol sizes, and parity symbols. The set of combinations of these parameter
configurations signify a corresponding set of aspect model variants (i.e., nine Error-
Correction variants and three Buffer variants) with different QoS characteristics and
resource demands. For example, increasing the values for the parity symbols and the
symbol size increase the protection level of the error correction, but at the cost of
CPU usage and start-up time.

Derive Variants Through Model Composition. The aspect models consist of tem-
plate forms of composite structure diagrams, expressed using a template variant of the
Role Based Meta-Modeling Language (RBML) [18]. RBML is a pattern description
language which characterizes a family of UML models. The aspect templates are
instantiated by binding template parameters to values. The parameters are marked
using the symbol “|” (see the aspects models in Fig. 8). When the role binding is
specified the primary model is composed with the aspect models according to speci-
fied composition rules.

We obtain four alternative compositions of the StrmCommunication service, two of
which are shown in Fig. 9 (pre-fetching without FEC and usage of the primary model
without including any aspects is not shown).

Fig. 9. Composition variants of StrmCommunication

84 S.A. Lundesgaard et al.

Specify Context Dependencies and QoS. Applying CEA-Frame, application specific
QoS characteristics, resources, and context elements need to be defined. The QoS
characteristics and resources definitions in our example are based on the ISO/IEC
9126 QoS characteristics catalogue [14] and the General Resource Model (GRM)
[15]. The specifications are modeled according to the guidelines of the UML profile
for QoS standard [13]. A subset of QoS characteristics resource and context types
used for the live media streaming application is shown in Fig. 10a.

a)

b)

Fig. 10. a) QoS characteristics, resource, and context types, and b) context dependencies and
QoS specification

The specified services are associated with context dependencies, QoS require-
ments, and QoS prediction functions. For context dependency specifications we use
the stereotype QoSContext. The QoSOffered stereotype us used to specify predicted
QoS. Both stereotypes are provided by the UML profile for QoS standard [13]. In
addition we have defined the QoSRequirement stereotype, which is used to specify the
QoS levels a service needs to fulfill, e.g., min and max values. A QoSRequirement
specification is identified based on expected usage of the service.

QoSOffered specifies QoS prediction functions that the middleware uses to calcu-
late the QoS for a given set of context and resource QoS values. For example,
StrmCommunication is associated with functions that predicts a long start-up time
when the PreFetchBuffer is part of the composition. However, when connected to
WLAN these functions predict increase in the frame drop rate and jitter. When
streaming live media (e.g., news and sport events), the user defined trade-off may be
to have low start-up time as long as the frame drop rate is below a certain limit. Fig.
10b shows examples of application specific context and QoS specifications using the
QoSContext, QoSOffered, and QoSRequirements stereotypes (the Object Constraint
Language (OCL) is used for specification).

 Construction and Execution of Adaptable Applications 85

For composite services, QoSOffered is dependent on the QoS offered by its parts.
Thus, QoS prediction in these cases need to take into account that the composite do
not know what parts it consist of, since new parts can be added when composing
aspect models. For example the offered startupTime for the StrmCommunication is a
summation of the startupTime of its parts; consequently, the different composition
variants will have different start-up times as expressed with the following OCL-based
predictor function:

(self.timeliness.startupTime = self.parts.collect(part:Property | part.type.feature->select (f:Feature |
f.name = 'timeliness'))->collect (f:Feature | f.type.attribute->select (a:Property | a.name = 'startUpTime'))
-> sum ()).

Apply Transformation. To bridge the model and platform levels of the adaptable
application, automated transformations are used for mapping UML models to applica-
tion variants and service type specifications. The PIM transformation source consists
of the four composed models derived from the compositions of aspect and primary
models, two of these are shown in Fig. 9. We refer to these as the base compositions.
Additional input to the transformation, for our example, is the specialization hierarchy
specifying primary model variants, the allowed values associated with aspect models
parameters determining aspect model variants, and context and QoS specifications.
From these a total number of 432 alternative variants of the StrmCommunication
service can be derived (4 base compositions*4 primary model variants*9 ErrorCor-
rection aspect model variants*3 Buffer aspect model variants). Thus, this specific case
illustrates the general challenge that the set of variants can be very large. To avoid a
large number of variants, one can identify combinations of the parameter values that
imply significant variation in the end-to-end QoS characteristics. Only these are de-
ployed as possible run-time variants. In the example this led to a reduction of combi-
nations of the three different sets of parity symbol lengths and symbol sizes for the
FEC service from nine combination to the following three value pairs: {8, 1}, {16, 2},
or {32, 8}). The number of derived PSM variants then becomes 144.

The transformations have been implemented using the MOFScript Eclipse plug-in
[10]. MOFScript was one of the proposed languages in the standardization process of
MOF Model to Text Transformations, which has been adopted and is now in its final-
izing stage [9]. In general, the implemented transformations map CEA-Frame PIM
concepts such as QoScharacteristics, QoScontext, and service specifications in pri-
mary and aspect models, to CEA-Frame PSM concepts such as service types, service
plans, and service realizations.

3.2 QoS-Aware Planning and Adaptation

In our example QuAMobile is installed on a laptop and a streaming server. The instal-
lation creates a common service context that provides protocols for service discovery
and context information sharing between the domain specific management plug-ins.
The service planner residing on the streaming server is configured as master, i.e.,
centralized planning and local adaptation. To illustrate the QoS-aware planning and
adaptation (tasks shown in Fig. 5) it is assumed that the user has the laptop connected
to the LAN. After some time the user disconnects and moves over to WLAN.

Deploy. Generated service types (WSDL), service plans, and components are de-
ployed and published on the machine on which the service is to execute.

86 S.A. Lundesgaard et al.

Identify. When the user requests access to the live streaming service, alternative
application variants are synthesized from the published services and discovered ser-
vice plans. QuAMobile identifies all of the 720 application variants (144 variants of
the StrmCommunication and additional 5 variants of the LiveMediaSrc services, re-
sulting in 720 variants of the LiveMediaStreaming application (see Fig. 6).

Context Dependency Filtering. Application variants that can not execute in the cur-
rent operating context are filtered, by comparing gathered context information against
the specified context dependencies (QoSContext in the composite models). In
QuAMobile, it is the context manager that gathers and processes data about the con-
text and makes information available to the service planner plug-in. For the identified
application variants, it is the specified dependencies to the screen resolution that are
caught by the context dependency filter, since three of the LiveMediaSrcs services
require a screen with a higher resolution than what the laptop has. After context de-
pendency filtering 288 variants remains.

QoS Prediction. End-to-end QoS characteristics are predicted using the specified
functions (QoSOffered stereotype) in a bottom-up style, i.e., start by calculating the
QoS of each atomic service and finishing of with the composite service. The QoS
prediction functions are specified and deployed as text strings; hence, the expressions
are calculated for each planning and adaptation process. Predicted QoS are checked
against QoS requirements specified by the application developer (QoSRequirement
stereotype).

Choose. Utility functions are used to specify the user’s QoS preferences and tradeoff
between user QoS dimensions, e.g., start-up time 6.0≥ , detail-level 6.0≥ , and
smoothness 6.0≥ . By using the provided utility functions (see Fig. 11Fig. 11) and the
predicted QoS QuAMobile calculates the utility of the application variants and
chooses the one, which i) meets the specified minimum utility values and ii) has the
highest utility-to-user QoS ratio. When the laptop is connected to the LAN it is the
application variant with the StrmCommunication composition without the FEC and
PreFetchBuffer services that is chosen, i.e., the primary model as depicted in Fig. 7.
This variant is selected since the increase in utility for the detail level and smoothness
dimensions are small compared to the increase in start-up time.

Fig. 11. Utility Functions

Execution. The application variant chosen is forwarded to the configuration managers
on the laptop and streaming server. They create the components, configure, and bind
them together. Execution of the initial application variant is like any other non- adapt-
able applications.

 Construction and Execution of Adaptable Applications 87

Adaptation. In our example the user disconnects the laptop from the LAN during the
streaming of a particular news event, i.e., the streaming connection is moved over to
WLAN by the RTP_TFRCTransport service. The context change makes the current
application variant unsuitable, as the bit error rate associated with WLAN causes
video frame to be dropped, i.e., too low utility for the smoothness dimension.
QuAMobile therefore initiates re-planning and chooses the application variant which
includes both the FEC and PreFetchBuffer services. This variant has a better balance
between the start-up time and smoothness QoS dimensions. During adaptation service
plans are used as a meta-model of the running application, enabling QuAMobile to
make changes to the running application.

4 Related Work

Atkinson et al. [19] combine model driven and aspect-oriented development. Aspect-
oriented techniques are used for refining specific aspects of the model (vertical sepa-
ration of concern) by architecture stratification. This approach differs from the aspect
approach employed in CEA-Frame, in that the aspects are not composed but represent
refinements of a particular part of the model at higher level stratums. Thus, each
stratum represents the whole system. Furthermore, Atkinson et al. define possible
refinements as pattern-based aspects applied through framework instantiations. In our
approach we use standard AOM and MDE mechanisms such as compositions and
transformations.

MDE is used by Kulkarni et al. [16] for providing separation of concern between
system concerns at both model and code level using templates and code weaving.
This is similar to the AOM approach we employ, except that we use parameterized
UML to specify aspects and perform model level composition avoiding the need for
code level weaving. Clarke et al. [17] and Ray et al. [7] also apply aspects for separa-
tion of concern. The aspects models are weaved with application models, by adding
and replacing both classes and operations. Kiczales et al. [5] employ aspect models
for multiple concerns; functional behavior and crosscutting concerns. Hyper/J multi-
ple models are integrated, making it possible to model alternative static application
variants. CEA-Frame integrates aspect models with the application logic in a similar
manner, but has additional support for parameter configuration, context, and QoS
requirements. In addition, MDE principles are used to generate platform specific
artifacts.

There are examples of adaptive middleware platforms that are combined with soft-
ware engineering tools; 2KQ+ [2], QuO [3], and CoSMIC [20]. 2KQ+ provides an envi-
ronment for specifying alternative service compositions, their QoS characteristics, and
adaptation steps. A platform dependent compiler produces executable code for adapt-
ing the application. QuO introduces description languages for specifying QoS, which
is compiled to executable code for monitoring QoS and controlling the interaction
between distributed objects. CoSMIC is a MDE toolkit, which model compositions
and QoS requirements at the platform level (a component based QoS-aware CORBA
middleware). CEA-Frame addresses the same problems as 2KQ+, QuO, and CoSMIC,
but at a platform independent level. This avoids specification of all possible context

88 S.A. Lundesgaard et al.

and resource allocations, and enable integration of the framework with any develop-
ment environment and middleware platform. Furthermore, CEA-frame pushes the
task of identifying and choosing a variant to run-time, giving a larger solution space
and higher probability of finding the best application configuration.

5 Conclusion and Future Work

The task of developing and operating distributed applications for heterogeneous dy-
namic environments is particularly difficult in the presence of multiple crosscutting
QoS features. Our approach to tackle this problem is to separate the QoS features
from the application logic, and place the responsibility of choosing and configuring
the application at the middleware level.

CEA-Frame combines AOM and MDE techniques for efficient construction of a
potentially large number of alternatives application variants needed due to the dynam-
ics and heterogeneity of the execution environment. A context and QoS-aware mid-
dleware is developed to handle adaptation. The framework provides: i) methods and
activity descriptions for constructing adaptable applications, ii) variability mecha-
nisms using aspects and model composition as well as parameterized primary and
aspect models, iii) separation of crosscutting QoS features iv) automatic model trans-
formation and code generation, and v) a QoS-aware planning and adaptation process
that configures and adapts the application to suit the operating context and resources
available. The implementation of the framework has been validated by using it to
construct and execute a live video streaming application.

The construction of application variants is accomplished by separating QoS vari-
ability specifications from variability of the primary model and the composition of the
primary model with different subsets of the aspect models. The automatic transforma-
tions support efficient derivation of a large number of alternative application variants
and eliminate tedious error-prone manual implementations. At the platform specific
level separating specifications of the alternative application variants and their QoS
characteristics (using the service plan concept) improves reusability of the services.
All information needed for the middleware to filter, order, and choose a suitable ap-
plication variant, is generated from platform independent models. CEA-Frame is
based on standards such as the UML profile for QoS [13], GRM [15], ISO/IEC 9126
[14], and MOF Model to Text [9].

To develop the CEA-Frame, we will work further on the model composition tech-
niques and related tool support. We are also working on OCL-based templates that are
easier to work with and more readable.

References

1. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective mIddle-
ware System for Mobile Applications. IEEE Trans. on Software Engineering 29(10),
929–945 (2003)

2. Nahrstedt, K., Xu, D., Wichadakul, D., Baochun, L.: QoS-Aware Middleware for Ubiqui-
tous and Heterogeneous Environments. IEEE Communications Magazine 39(11), 140–148
(2001)

 Construction and Execution of Adaptable Applications 89

3. Loyall, J., Bakken, D., Schantz, R., Zinky, J., Karr, D., Vanegas, R., Anderson, K.: QoS
Aspect Languages and Their Runtime Integration. In: O’Hallaron, D.R. (ed.) LCR 1998.
LNCS, vol. 1511, pp. 303–318. Springer, Heidelberg (1998)

4. OMG, MDA TM Guide v1.0.1, http://www.omg.org/docs/omg/03-06-01pdf
5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingier, J., Irwin, J.:

Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–241. Springer, Heidelberg (1997)

6. Ossher, H., Tarr, P.: Using Multidimensional Separation of Concerns to (Re)shape evolv-
ing Software. Communications of the ACM 44(10), 43–50 (2001)

7. Ray, I., France, R., Li, N., Georg, G.: An Aspect-Based Approach to Modeling Access
Control Concerns. Journal of Info. and Software Tech. 46(9), 575–587 (2004)

8. France, R., Ray, I., Georg, G., Ghosh, S.: An aspect-oriented approach to design modeling.
IEE Proc. Software, vol. 151(4) (2004)

9. OMG: MOF Models to Text Transformation Language Final Adopted Specification.
Technical report, OMG document ptc/06-11-01 (2006)

10. MOFScript Eclipse plug-in, http://www.modelbased.net/mofscript
11. Lundesgaard, S., Lund, K., Eliassen, F.: Utilising Alternative Application Configurations

in Context- and QoS-aware Mobile Middleware. In: Donatelli, S., Thiagarajan, P.S. (eds.)
ICATPN 2006. LNCS, vol. 4024, pp. 228–241. Springer, Heidelberg (2006)

12. Simmonds, D., Solberg, A., Reddy, R., France, R., Ghosh, S.: An Aspect Oriented Model
Driven Framework. In: Proc. the Enterprise Distributed Object Computing Conference,
pp. 119–130 (2005)

13. UML profile for modeling QoS and Fault Tolerance characteristics and Mechanisms.
Adopted standard, OMG May 2005, Document ptc/05-05-02 (2005)

14. ISO/IEC JTC1/SC7, 1999a, Information Technology -Software product quality -Part 1:
Quality model, ISO/IEC, Report: 9126-1

15. Object Management Group, UML Profile for Schedulability, Performance, and Time
Specification, ad/2000-08-04 (2002)

16. Kulkarni, V., Reddy, S.: Separation of Concerns in Model-driven Development. IEEE
Software 20(5), 64–69 (2003)

17. Clarke, S., Harrison, W., Ossher, H., Tarr, P.: Subject-Oriented Design: Towards Im-
proved Alignment of Requirements, Design and Code. In: Proc. of 14th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Application,
pp. 325–339 (1999)

18. France, R.B., Kim, D., Ghosh, S., Song, E.: A UML-Based Pattern Specification Tech-
nique. IEEE Trans. on Software Eng. 30(3), 193–206 (2004)

19. Atkinson, C., Kühne, T.: Aspect-Oriented Development with Stratified Frameworks. IEEE
Software 20(1), 81–89 (2003)

20. Gokhale, A., Balasubramanian, K., Krishna, A., Balasubramanian, J., Edwards, G., Deng,
G., Turkay, E., Parsons, J., Schimdt, D.: Model Driven Middleware: A New Paradigm for
Developing Distributed Real-time Embedded Systems. Science of Computer programming
(2005)

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 90–103, 2007.
© IFIP International Federation for Information Processing 2007

Component Adaptation in Contemporary Execution
Environments

Susan Eisenbach1, Chris Sadler2, and Dominic Wong3

1 Department of Computing, Imperial College London
2 School of Computing Science, Middlesex University

3 Morgan Stanley, London
S.Eisenbach@imperial.ac.uk

Abstract. Because they are required to support component deployment and
composition, modern execution environments embody a number of common
features such as dynamic linking and support for multiple component versions.
These features help to overcome some classical maintenance problems focused
largely on component evolution, where successive generations of collaborating
components need to be kept collaborating. What has been less studied has been
component adaptation, whereby a component developed in an environment
consisting of one set of service components is required to operate in one or
several other environments containing qualitatively different components. In
this paper we examine the needs developers and deployers have arising out of
component adaptation and explore the concept of Flexible Dynamic Linking as
a means of satisfying them. We describe a suite of tools developed to
demonstrate this approach to component adaptation support within the .NET
Common Language Runtime.

Keywords: component adaptation, component evolution, dynamic linking,
execution environments, .NET, runtime systems.

1 Introduction

Applications based on software components offer computer users a variety of benefits
including widespread utilization of robust ‘industrial-strength’ subcomponents;
optimal exploitation of system resources through resource sharing and conditional
loading; and potentially frequent and transparent updating. There are also benefits for
the developers of the components who can continue improving and updating their
products, even after their clients have taken delivery of and started to use their
software.

Modern execution environments that have been built to run such applications need
to embody a number of characteristic features in order to deliver these benefits. In the
first place they need to be able to manage all the components. This has proved more
difficult than might at first be thought and the history of recent operating systems
development is sprinkled with cases where this rather obvious requirement has been
inadequately accomplished. In an environment where any given component may be
required by more than one application, it is essential that the component management
system can deal with multiple versions of the component, since an upgrade which is

 Component Adaptation in Contemporary Execution Environments 91

beneficial to one application can easily prove disastrous to another. This phenomenon
is known as DLL Hell in Microsoft[32] and is not unknown in other runtime
environments[13].

The second feature that is needed for component-based support is dynamic linking,
by means of which the components that an application depends on are located and
loaded only at runtime and only on demand. This is how the use of system resources
can be optimized. When code is compiled, information about the nature and location
of external references needs to be recorded and retained with the object. In statically
linked systems, the location tends to be recorded as a memory offset and all the code
must be loaded together. In a dynamic linking system, the information will more
likely be a symbolic reference (for example, a pathname) that can be passed to the
operating system at runtime.

When these two features are combined in an execution environment, what emerges,
in principle, is a powerful maintenance regime. Component evolution – implying that
the improvements made to the next generation of one component will be
automatically propagated to its existing clients – is generally well provided for in
modern execution environments[15]. Component adaptation - porting an application
from one environment to another - should not require significant intervention
provided that compatible service components exist. So an application written to
exploit, say, the ODBC of SQLServer should be able to execute with some generic
ODBC without requiring an entire new build. In practice, applications are
conventionally bound only to the actual components they were compiled against. The
best the runtime system can do is use the symbolic references to re-locate those
resources in the new (deployed) environment – so although linking is dynamic
because it occurs at runtime, it is still essentially fixed. However, the redirections
required to achieve both evolution and adaptation can be obtained by interfering with
the symbolic reference data between compile-time and runtime. This intervention has
been termed flexible dynamic linking[8] and different execution environments permit
this to a greater or lesser extent.

In this paper we discuss the limitations of dynamic linking in section 2 and explore
the interventions needed to achieve flexible dynamic linking in the .NET Common
Language Runtime in section 3. Section 4 describes the various elements of the
FLAME toolset that was developed to accomplish flexible dynamic linking to support
specifically component adaptation. The paper concludes with related and future work.

2 Dynamic Linking

Dynamic Linking was first used in the MULTICS (Multiplexed Information and
Computing Service) system[10]. It has found its way into many of today’s
programming environments including Java[17] and the .NET Framework[22]
primarily as a means of satisfying the late binding requirements of modern object-
oriented programming languages. The impact of dynamic linking on the efforts of
software maintainers is therefore something of a side-effect. Nevertheless, component
evolution has been rather well catered for by the approach taken which goes a long
way to resolving DLL Hell[14]. Component adaptation has not received the same
amount of attention partly because it has not been perceived of as such a big problem.

92 S. Eisenbach, C. Sadler, and D. Wong

Since the dawn of Commercial Off-The Shelf (COTS) software, it has been the
case that the computer system that a piece of software was developed on has not
necessarily been the same as the sort of system that it eventually runs on. The
developer needs to make some attempt to ensure that the software’s clients’
expectations of success will not be thwarted by missing or underspecified resources.
The traditional method of tackling this problem consists of publishing a ‘minimum
specification’ that the software will be guaranteed to run on.

In a component-based software environment, this approach can lead to situations
where, at the majority of deployment sites, applications are bound to suboptimal
resources. For example, an application might use software floating point processing
on a system where floating point hardware exists. The developer’s policy here is “The
speed of the convoy is the speed of its slowest ship”. This policy is not satisfactory for
clients who have invested in higher-specification hardware or richer software
resources. A generally more satisfactory approach is for developers to program to an
Applications Programming Interface (API). Each client then has the obligation to
provide an implementation of the API requirements as best as the system will allow.
For existing component-based software environments, this involves creating or
configuring components with the same signatures as those on the development
system. The systematic approach to this process is termed component adaption
(regrettably similar to component adaptation) where API mismatches between
components are bridged by intermediate components, or adaptors [5].

However, this approach is still restrictive, as linking is constrained by compiler
decisions. Compiling in a Microsoft environment will result in the expectation that
System.Console.Writeline will come from mscorlib. Trying to execute
the same code on a Linux system, where System.Console.Writeline comes
from monolib, will result in a resolution error. Similar errors occur if the class
names are not identical. The compiler has hardwired the symbolic reference with the
classname and no further flexibility is possible.

In the context of this paper, another potentially confusing nomenclature is
compositional adaptation [21] which describes a similar but essentially harder
problem – the dynamic update, or hot-swapping of components during runtime.
Considerations of these capabilities is largely focused on systems supporting
ubiquitous computing [26] or autonomic computing [6].

3 Flexible Dynamic Linking

How often would the flexibility sought after in Section 2 make a difference to the
applicability or portability of real-world components? This line of research was
motivated by two cases where proprietary software that our components depended on
could not be shipped to or otherwise accessed by some clients. In the first case a
research package [20] utilized some routines derived from embargoed NASA
algorithms. In order to make this tool available to a wider research community, it was
necessary to embed some complex reflective code so as to effect the appropriate
redirections.

 Component Adaptation in Contemporary Execution Environments 93

In the second case an international merchant bank had developed a specialised
DLL which was optimised for writing to their database. For confidentiality reasons
they declined to distribute it to external software subcontractors. The subcontractors
therefore had to develop using a generic database writer with no optimisation (see
Table 1).

Table 1. Instead of the database library how can a database library be targeted?

Source code Compile-time classes Runtime classes
New DBLib() DBLib OK SQLSvrLib ??
New DBLib() (None) ?? DBLib, OK

SQLSvrLib OK

The idea behind Flexible Dynamic Linking is to allow the hardwiring performed

by the compiler to be bypassed in some fashion. On the developer’s side, this could
allow for a range of alternative components to be suggested as binding partners at
remote sites. On the deployer’s side, it would permit the substitution of one
component for another. This should make things more satisfactory in both of the real-
life cases, without compromising type safety.

3.1 The Common Language Infrastructure

Like the Java Virtual Machine, the .NET Common Language Runtime (CLR) offers a
managed environment for safe and secure program execution. Both systems take
programs in the form of bytecode (called Microsoft Intermediate Language - MSIL -
in the case of .NET). In .NET the MSIL is compiled into native code by the runtime
just before it is executed whereas Java bytecode is normally interpreted. One of Java’s
strengths is its platform independence and at first glance it would seem the .NET
Framework is missing this valuable attribute. However Microsoft has released its
specification and it was standardised by the European Computer Manufacturers
Association (ECMA). ECMA-335[16] defines the Common Language Infrastructure
(CLI) where applications written in different languages can be run on differing
systems without the need to take into account the characteristics of that environment.

The central store for shared libraries to be used by the CLR is called the General
Assembly Cache (GAC). Microsoft’s .NET Framework assemblies (Microsoft’s term
for components) are placed here for shared access. Only globally unique assemblies
are allowed to be shared and installed into the GAC, all others are considered to be
private, not trusted for sharing, and are usually kept within the application folder.
Fusion is the assembly loader that handles the dynamic linking within the CLR and it
is invoked whenever a reference to an external assembly is made.

Three important open source implementations of the ECMA-335 standard are
Mono[31], DotGNU[11], and Rotor (Microsoft’s own Shared Source Common
Language Infrastructure (SSCLI)) [24,29].

3.2 Definition

Dynamic linking allows the linking at runtime to a class that was identified at
compile-time. Flexible Dynamic Linking defers the decision of which class to link to

94 S. Eisenbach, C. Sadler, and D. Wong

until runtime when the linker will make the final decision. This serves to decouple the
runtime environment from the compile time environment. Flexible Dynamic Linking,
as set out in [8], achieves this by using type variables instead of class names in the
bytecode generated during compilation. A type variable is a placeholder for a type. At
runtime the decision on which type is used as a substitute is taken by the linker
normally based on some predefined policy. For example, consider:

public class Class1
{
 static X list;
 public static void Main(string[] args)
 {
list = new X(); list.Add(“foobar”);
 }

}

The type variable X is a placeholder for a real type. This will be compiled into the
bytecode and when it comes to executing the code the linker will recognise this as a
type variable and make a decision as to which type it should substitute in its place. In
theory, as long as the chosen substitute has an empty constructor and has the method
Add(String s) then it will execute without error. This conception of linking can
assist component adaptation since creating platform independent code is simply a
matter of using type variables and ensuring that there is a type on the target platform
which provides the same interface as that being used by the type variable. The same
applies to utilising DLLs which are known to be on the target system.

However, when we come to apply this strategy to .NET there is a slight
modification which is needed due to the way in which external types are referenced in
MSIL bytecode. Consider the following “Hello World” program in .NET:

.method private hidebysig static void Main(string[] args)
cil managed

{
 .entrypoint
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Hello World"
 IL_0006:call void[mscorlib]

System.Console::WriteLine(string)
 IL_000b: nop
 IL_000c: ret
} // end of method Program::Main

The reference to the type System.Console is tagged with the assembly in which
it is found, mscorlib. As a consequence of this, every type variable which we
generate for the bytecode must be represented in two parts; an assembly type variable
and a class type variable.

 Component Adaptation in Contemporary Execution Environments 95

4 FLAME

The tool described in this paper is named FLAME. It is based on CUPID[1] an
implemention of Flexible Dynamic Linking that was designed so as to give
developers the ability to indicate compatible substitutions at both the class and
assembly levels. CUPID implements logical type variables – metadata inserted into
the bytecode that tags specific classes and assemblies as potentially variable. CLIs
that cannot interpret the metadata can execute the assembly as normal, linking to the
original build references. The metadata is created via the use of custom attributes.
These allow the developer to define the assemblies/classes to be replaced, what to
replace them with, and some other linking options. A risky alternative would be to
allow any assembly which provides the correct API (called a binary compatible
assembly) to be a possible substitution candidate.

CUPID ensures type safety by analysing the bytecode of the application and
automatically generating appropriate member constraints to be inserted. Member
constraints specify all class/field accesses that the substitute member must satisfy
during execution of the program. CUPID also allows the (manual) specification of
structural constraints - ensuring that, if there is a supertype-subtype relationship
between two classes, then whatever type replaces the supertype must be a supertype
of the type that replaces the subtype.

The FLAME system was designed to automate the specification of the structural
constraints for the developer and then to develop a deployer-centric solution. To
achieve these two goals we have three distinct components; the FLAMEConstraint
tool, the FLAME runtime and the FLAMEConfig tool. Fig. 1 shows how the three
components are related.

Fig. 1. Architectural overview of FLAME

Assembly with
developer’s
flexible linking
directives

FLAMEConstraint

FLAMEConfig

FLAME Runtime

Assembly
with directives
and constraints

Deployer’s
flexible linking

directives

96 S. Eisenbach, C. Sadler, and D. Wong

In the CUPID system member constraints are generated by a Perl script (dubbed
flxibl). In order to improve efficiency FlameConstraint utilises the Phoenix
compiler framework [23] to provide the basis for a new post-compilation tool which
will generate both member and subtype constraints. Two attributes, LinkAssembly
and LinkClass, are used to create linking directives attached at the appropriate
scope: assembly, module, class or method. The constraints for substitute assemblies
and classes are derived from these directives and are then inserted into the bytecode,
again at the appropriate scope level. The constraints are defined using two custom
attributes, LinkMemberConstraint and LinkStructureConstraint.

LinkAssembly Attribute. A LinkAssembly attribute redirects all class references,
within a given scope, from its original assembly to a new one by essentially replacing
the original assembly name with a new one. The LinkAssembly attribute has
parameters that fully describe the original and new assembly.

LinkClass Attribute. The LinkClass attribute does for classes what
LinkAssembly does for assemblies. However, since a class reference includes both
the assembly and class names a LinkClass attribute must have a corresponding
LinkAssembly attribute that contains the same InterfaceName.

LinkMemberConstraint Attribute. When we substitute one class for another, the
new class must provide all of the method calls and field references that the program
makes on the old class. These required methods and fields are called member
constraints and are expressed through the LinkMemberConstraint attribute.

LinkStructureConstraint Attribute. The types referenced in a program have a
complex set of subtype and supertype relationships. Among other things, subtypes are
often used in place of supertypes as arguments to method calls and subtypes can be
cast to one of their supertypes for further manipulation. Any new classes introduced
as substitutes must satisfy the subtype and supertype relationships as the classes they
replace. These relationships are expressed as LinkStructureConstraint
attributes.

To clarify the usage of the attributes and what FLAMEConstraint does with
them consider the following code:

[LinkAssembly(“System.Windows.Forms”, “SpecialForms”,
“1.1.*”, null, null, true, “special”,
InterfaceType.LOCAL_INTERFACE)]
[LinkClass(“System.Windows.Forms.Form”, “BlueForm”,
“special”)]
public static void Main {
Form f = new Form();
f.Show()
Form d = new MDIWindowDialog();
}

The use of the two attributes LinkAssembly and LinkClass describe a single
flexible linking directive which redirects all references to the
System.Windows.Forms.Form class (which has been defined in the

 Component Adaptation in Contemporary Execution Environments 97

System.Windows.Forms assembly) to the BlueForm class (defined in the
SpecialForms assembly). When this code is parsed by the FLAMEConstraint
tool it generates member and subtype constraints based on the usage of all instances
of the System.Windows.Forms.Form and results in the augmented code given
below:

[LinkAssembly(“System.Windows.Forms”, “SpecialForms”,
“1.1.*”, null, null, true, “special”,
InterfaceType.LOCAL_INTERFACE)]
[LinkClass(“System.Windows.Forms.Form”, “BlueForm”,
“special”)]
[LinkMember(“System.Windows.Forms”,
“System.Windows.Forms.Form”, “Application1.exe”,
“100663300”, false)]
[LinkMember(“System.Windows.Forms”,
“System.Windows.Forms.Form”, “Application1.exe”,
“100663323”, false)]
[LinkStructure(“System.Windows.Forms”,
“System.Windows.Forms.Form”, “100782403”,
“System.Windows.Forms”,
“System.Windows.Forms.MDIWindowDialog”, “1008392532”,
“Application1.exe”)]
public static void Main {
 Form f = new Form();
 f.Show()
 Form d = new MDIWindowDialog();
}

The FLAMEConstraint tool has generated LinkMember constraints which
specify that the replacement must provide the constructor and Show() methods,
although this is hard to see since they are referred to only by metadata token numbers
(for example “100663300”). A subtype constraint, in the form of a
LinkStructure attribute, says its replacement must be a supertype of the
MDIWindowDialog type.

4.1 FLAME Runtime

The application configuration file is an XML file which resides in the application’s
directory and is named <applicationName>.exe.config. Under the normal
.NET runtime when the application is run, execution will proceed as normal until an
external type is referenced. Fusion will then find the referenced type’s enclosing
assembly and load it into the runtime. .NET strong-name assemblies are identified by
name, a public key ID, a ‘culture’ and a four-part version number. The first time that
Fusion is invoked it searches the application directory for a corresponding application
configuration file. If one is found, it will parse the XML and cache the information for
future reference. Whenever Fusion receives an assembly load request it will first
consult its cached application configuration file to see whether the assembly is subject

98 S. Eisenbach, C. Sadler, and D. Wong

to a version redirect and if so it will attempt to load the specified version else it will
load the originally requested version. A typical binding redirection looks like this:

<assemblyIdentity name=”TestLibrary1”
 publicKeyToken=”9D9229CF9B3C922D”
 culture=”neutral”
 />
<bindingRedirect oldVersion=”1.0.0.0”
 newVersion=”2.0.0.0”

 />

To specify our flexible linking directives in FLAME we extended the existing

<bindingRedirect> tag of the application configuration file so that we can
describe a new assembly. This means accommodating the name, culture and public
key token of the new assembly. Thus:

<bindingRedirect interfaceName=”macosx”
 interfaceType=”ANY_INTERFACE”
 oldVersion=”1.0.0.0”
 newVersion=”2.0.0.0”
 newAsmName=”TestLibrary2”
 newPublicKeyToken=”9B9287CC6B3C809A”
 newCulture=”neutral”
 />

This redirects all references from TestLibrary1 to TestLibrary2. This means that

TestLibrary2 must define all of the types which TestLibrary1 offers and which are
referenced in the application otherwise we will find a type load exception at runtime.
We also need the capacity to redirect individual types within an assembly. This is
achieved through varClass and newClass attributes of the
<bindingRedirect> tag.

To carry out the deployer defined flexible linking directives in FLAME we could
create and insert metadata into the assembly’s bytecode to describe the substitutions.
This would involve invoking a tool before the code is executed to modify the original
assembly with some new metadata. The underlying runtime would not have to be
touched because in essence it is performing the same steps as the FLAMEConstraint
tool with two major differences:

(i) The metadata would be generated from a given list of substitutions, not from
custom attributes.

(ii) The bytecode changes would occur just before runtime at the deployer side,
instead of occurring just after compilation at the developer side.

Unfortunately, to modify the metadata requires the assembly to be disassembled
and then reassembled, and if the original assembly was signed with a private key by
the developer it would need to be resigned when it was reassembled. The deployer

 Component Adaptation in Contemporary Execution Environments 99

would not be in possession of this key so would be unable to re-sign the assembly
thus restricting usage to unsigned applications.

Therefore it is necessary to modify the runtime directly so that it can parse the
additional binding redirection XML and then act upon it. The enhanced FLAME
runtime does not check constraints on any types that it flexibly links. This means that
after loading a substitute assembly/class it is possible that the runtime will not be able
to load the required type or invoke the required method.

One possible solution is to use the application configuration file for storing the
constraints, but this has two main drawbacks. First of all, XML is a very verbose
representation format and representing a single member or subtype constraint takes
several lines of XML. A reasonably sized application with a large number of
constraints would end up with an extremely bloated application configuration file.
Secondly, the application configuration is usually edited by hand which makes it very
easy for someone to accidentally remove or alter a constraint.

A further reason for not incorporating runtime constraint checking is the potential
performance decrease when verifying a large number of constraints. Member
constraints are quite fast to check since it is only querying the existence of a method
or field in the loaded class. However, subtype constraints can potentially take much
longer. Consider a type T1, defined in assembly A1, with a subtype constraint which
says that whatever replaces T1 must be a supertype of type T2. To check this
constraint we must load type T2, which is defined in assembly A2, and then check the
relationship between the two types. Unfortunately type T2 is also subject to flexible
dynamic linking, it is to be replaced by type T3. So we must now also verify that T3
satisfies all of T2’s constraints. Loading these types from the different assemblies,
which may not be required during the run, causes delays in the execution and also
increases the memory footprint of the running application.

Fig. 2. Screenshot from the FLAMEConfig tool

100 S. Eisenbach, C. Sadler, and D. Wong

4.2 FLAMEConfig

Without storing a great deal of semantic information, it is not feasible to perform
constraint verification automatically at runtime, so it is essential to ensure that any
substitute assembly identified in a flexible linking directive will be binary compatible
with the application. FLAMEConfig is an interactive tool which is designed to
achieve the required type-checking in an intermediate step taken at the deployment
site. The operation of FLAMEConfig is as follows:

(i) The application for which flexible linking directives are to be created is
loaded into the tool.

(ii) A list of all the assemblies and classes referenced within the loaded
application is displayed to the user. (If the assembly is missing for some
reason FLAMEConfig will inform the user.)

(iii) The user picks the assembly/class they wish to flexibly link and the list of
possible substitute assemblies/classes is displayed to the user.

(iv) The user chooses the substitute from the list and defines what interface type
and name they want for the directive. (see Fig. 2)

(v) Finally, the tool creates the appropriate XML to express the flexible linking
directive and adds it to the application configuration file.

The list of possible substitutes is generated by examining the GAC and local
application folder for every assembly. An assembly/class is then added to the list of
eligible substitutes if it can satisfy the member and subtype constraints inferred from
the selected referenced assembly/class. Provided that the application configuration
file is not manually edited subsequent to this step, the flexible linking directives are
guaranteed to substitute binary compatible assemblies/classes (as long as the
execution environment does not change).

The three components of the FLAME system combined with CUPID make a
complete system for flexible dynamic linking, enabling both developers and deployers
to control the flexible linking process. Deployer-defined directives are located in the
application configuration file whilst developer-defined ones are embedded in the
assembly metadata. Thus there is no danger that they will conflict syntactically, so to
speak. In circumstances where they conflict semantically, it is the deployer-defined
directive that takes precedence.

4.3 Case Study: xmlValid

The FLAME system was tested on a real-world application called xmlValid - a
simple command line XML validation tool[30] which checks whether an XML file is
well formed and validates it against a given XSD file.

The xmlValid assembly references two external assemblies; mscorlib and
System.Xml. The class System.Xml.XmlTextReader was chosen as the
target for flexible dynamic linking. A new class, MyXml.MyXmlTextReader was
developed as a binary compatible replacement. We ran timing tests to gauge the
performance difference, the results of which are presented in Table 2.

 Component Adaptation in Contemporary Execution Environments 101

Table 2. Execution times of with and without flexible linking

Run Normal Time (s) Flex Linked Time
(s)

Difference (s)

1 9.51 10.12 0.61
2 9.17 10.08 0.91
3 9.78 10.00 0.22
4 9.14 9.98 0.84
5 9.10 9.93 0.83
6 9.24 10.23 0.99
7 9.07 10.01 0.94
8 9.12 10.29 1.17
9 9.16 10.60 1.44

10 9.20 9.92 0.72
Average 9.25 10.12 0.87

Flexible dynamic linking added an average 0.87 seconds or around a 9.4% increase in
execution time using a test input file. Since (typically) larger XML files would take
longer to validate, this overhead could be expected to fall. So the performance cost
for having flexible dynamic linking does not seem unacceptable.

5 Related and Future Work

The idea of keeping types unspecific at compile-time by means of type variables has
been examined in several programming communities [28,18,3]. In the meantime,
linking-time behaviour, both for .NET and for the Java Virtual Machine has received
some formal attention [2,12,7].

The current work is built on a number of earlier projects, focused initially on
component evolution [14], which anticipated the .NET 2.0 introduction of type
forwarders [19]; and then on component adaptation [9,1]. Execution environments
that support the runtime interpretation of metadata, in conjunction with pertinent
configuration files, are bound to receive increasing attention [25,27,4].

A number of future extensions to the FLAME toolset itself are possible. Instead of
asking the developer or deployer to choose replacement assemblies or classes, an
enhanced runtime could make the decision based on some heuristics. The heuristics
used to decide which substitution is most appropriate would have to be based on the
properties of the assembly.

The Phoenix framework offers a rich toolset for dataflow analysis and generation
of member and subtype constraints could be based on dataflow information. Those
referenced methods and fields and subtype relationships which applied during a
typical run of the program could be used to constrain the possible replacement
assembly.

Application configuration files are not the only files that the Fusion checks for
binding information. The machine configuration file redirects the loading of particular
assemblies for every executable run on that machine. The schema for the machine
configuration file is identical to that for the application configuration file so

102 S. Eisenbach, C. Sadler, and D. Wong

modifying FLAME to extend flexible linking to this file should not be particularly
difficult. Finally developers could distribute application configuration files directly
with their programs, then these could be fed into the FLAMEConfig tool at the
deployer end to verify that they obey the member and subtype constraints.

The main goal of this project was to provide a method for the deployer to specify
any assembly or class which should be subject to flexible dynamic linking and to
ensure that it will be carried out in accordance with all the directives and binary
compatibly. Additionally the tools to help the developer were improved. The Flame
toolset lets the developer suggest and the deployer choose different assemblies and
classes than were available in the compilation environment. We have developed our
toolset on .NET because it had metadata which made the implementation reasonably
straightforward. However, we believe that the ability to do component adaptation
should be more widely applicable.

Acknowledgments. The software described in this paper was inspired by Alex
Buckley’s PhD thesis work on Flexible Dynamic Linking. We would like to thank
him for all his help in the development of Flame.

References

1. Aaltonen, A., Buckley, A., Eisenbach, S.: Flexible Dynamic Linking for.NET. Journal of
.NET Technologies, vol 4 (June 2006)

2. Abadi, M., Gonthier, G., Werner, B.: Choice in Dynamic Linking. In: Walukiewicz, I.
(ed.) FOSSACS 2004. LNCS, vol. 2987, Springer, Heidelberg (2004)

3. Ancona, D., Damiani, F., Drossopoulou, S., Zucca, E.: Polymorphic Bytecode:
Compositional Compilation for Java-like Languages. In: ACM SIGPLAN-SIGACT
Symposium on Principles of Progamming Languages. Long Beach, California (2005)

4. Attardi G., Cisternino, A., Colombo, D.: CIL + Metadata > Executable Program. Journal
of Object Technology, Special issue: .NET: The Programmers Perspective: ECOOP
Workshop (2003)

5. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaption. In: J. Syst.
Softw. vol. 74(1) (2005)

6. Bialek, R., Jul, E., Schneider, J.-G., Jin, y.: Partitioning of Java Applications to Support
Dynamic Updates. In: 11th Asia-Pacific Software Engineering Conference
(APSEC’04)(2004)

7. Buckley, A.: A Model of Dynamic Binding in .NET in ECOOP Workshop on Formal
Techniques for Java-like Programs. Oslo, Norway (2005)

8. Buckley, A., Drossopoulou, S.: Flexible Dynamic Linking. In: ECOOP Workshop on
Formal Techniques for Java-like Programs. Oslo, Norway (2004)

9. Buckley, A., Murray, M., Eisenbachm, S., Drossopoulou, S.: Flexible Bytecode for
Linking. In: .NET in ETAPS Workshop on Bytecode Semantics, Verification, Analysis
and Transformation. Edinburgh, Scotland (2005)

10. Corbato, F.J., Vysssotsky, V.A.: Introduction and Overview of the MULTICS System.
AFIPS Fall Joint Computer Conference (1965)

11. DotGNU Project: Available from: http://dotgnu.org/
12. Drossopoulou, S., Lagorio, G., Eisenbach, S.: Flexible Models for Dynamic Linking. In:

European Symposium on Programming. Warsaw, Poland (2003)

 Component Adaptation in Contemporary Execution Environments 103

13. Eisenbach, S., Jurisic, V., Sadler, C.: Feeling the Way Through DLL Hell. In: First
Workshop on Unanticipated Software Evolution. Malaga, Spain (2002)

14. Eisenbach, S., Kayhan, D., Sadler, C.: Keeping Control of Reusable Components. In:
International Working Conference on Component Deployment. Edinburgh, Scotland
(2004)

15. Eisenbach, S., Sadler C.: Reuse and Abuse. Journal of Object Technology, (January 1,
2007) vol 6. ETH Swiss Federal Institute of Technology (2007)

16. ECMA International: Standard ECMA-335 Common Language Infrastructure (CLI)
(2005) Available from: http://www.ecma-international.org/publications/standards/Ecma-
335.htm

17. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java(TM) Language Specification, 2nd edn.
Addison Wesley, London (2000)

18. Kennedy, A., Syme, D.: Design and Implementation of Generics for the .NET Common
Language Runtime. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation. Snowbird, Utah, USA (2001)

19. Lander, R.: The Wonders of Whidbey Factoring Features. Part 1: Type Forwarders
(September 14, 2005) Available from http://hoser.lander.ca/

20. Magee, J., Kramer, J.: Concurrency : state models & Java programs Chichester, England,
Wiley (2006)

21. McKinley, P., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: A Taxonomy of Compositional
Adaptation in Software Engnieering and Network Systems Laboratory Technical Report
MSU-CSE-04-17 (2004)

22. Microsoft Corporation: Microsoft Developer Network. Available from: http://msdn.
microsoft.com

23. Microsoft Corporation. Phoenix Documentation (2005) Available from: http://research.
microsoft.com/phoenix/

24. Microsoft Corporation. SSCLI Documentation (2002) Available from: http://research.
microsoft.com/sscli/

25. Mikunov, A.: Rewrite MSIL Code on the Fly with the .NET Framework Profiling API.
MSDN Magazine (September 2003)

26. Paspallis, N., Ppapadopoulos, G.A.: An approach for Developing Adaptive, Mobile
Applications with Separation of Concerns. In: Proc. COMPSAC’06 (2006)

27. Piessens, F., Jacobs, B., Truyen, E., Joosen, W.: Support for Metadata-driven Selection of
Run-time Services In: .NET is Promising but Immature. Journal of Object Technology,
Special issue: .NET: The Programmers Perspective: ECOOP Workshop (2003)

28. Shao, Z., Appel, A.W.: Smartest Recompilation. In: Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’93),
Charleston, South Carolina, USA (1993)

29. Stutz, D., Neward, T., Shilling, G.: Shared Source CLI Essentials. O’Reilly (2003)
30. Sells, C.: .NET and Win 32 tools. available from :http://www.sellsbrothers.com/tools
31. What is Mono? Available from: http://www.mono-project.com/Main_Page
32. Wong, F.: DLL Hell, The Inside Story (1998) available from: http://www.desaware.

com/tech/dllhell.aspx

Managing Distributed Adaptation of Mobile
Applications

Mourad Alia1, Svein Hallsteinsen2, Nearchos Paspallis3, and Frank Eliassen4

1 Simula Research Lab, Martin Linges v 17, Fornebu, P.O.Box 134, 1325 Lysaker, Norway
mouradal@simula.no

2 SINTEF ICT, S.P. Andersens vei 15 b, Trondheim, Norway
svein.hallsteinsen@sintef.no

3 Department of Computer Science, University of Cyprus, P.O. Box 20537, Nicosia, Cyprus
nearchos@cs.ucy.ac.cy

4 Department of Informatics, University of Oslo, P.O.Box 1080 Blindern, Oslo, Norway
frank@ifi.uio.no

Abstract. Mobile computing is characterised by variations in user needs and in
the computing and communication resources. We have developed a middleware
centric approach for the development of software capable of dynamically adapt-
ing to such variations. The middleware leverages models of needs and resources
and the adaptation capabilities of the software and performs context monitoring,
adaptation planning and dynamic reconfiguration at runtime. In this paper we
focus on the modelling of resources of a distributed mobile computing infrastruc-
ture and how the resource model is used in adaptation planning. We present a dis-
tributed resource management framework and mechanisms necessary to maintain
an up to date resource model at runtime. The challenge is to balance the level of
abstraction so as to hide some of the heterogeneity of the actual infrastructure
while retaining sufficient detail to serve the needs of distributed and centralized
adaptation planning. The proposed framework is illustrated through a running
example.

1 Introduction

With the increasing mobility and pervasiveness of computing and communication tech-
nology, software systems are commonly accessed through handheld, networked de-
vices, carried by people moving around. This introduces dynamic variation both in the
user needs and in the operating environment of the provided services. For example,
communication bandwidth changes dynamically in wireless communication networks
and power is a scarce resource on battery-powered devices when outlet power is not
available. Under such circumstances, applications need to adapt dynamically in order
to retain usability, usefulness, and reliability. To design such applications many recent
works have proposed general solutions based on an adaptation loop control monitor-
ing user needs and available resources and adapting the application accordingly. How-
ever, most of these solutions concentrate on the dynamic reconfiguration of the mobile
application on the client device, without properly exploiting the computing resources
available throughout the wireless networks it is mostly connected to [1,2].

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 104–118, 2007.
c© IFIP International Federation for Information Processing 2007

Managing Distributed Adaptation of Mobile Applications 105

In the MADAM1 approach, adaptations are carried out by generic middleware where
earlier implementation of the running application are reconsidered in response to con-
text changes [4]. This is also referred to as planning. The (re)planning is based on
runtime architecture models of applications with their adaptation capabilities explicitly
modelled. During re-planning, alternative architecture models of the running applica-
tions are dynamically generated by considering alternative implementation choices for
the component types of the applications. The adaptation reasoning relies on the use
of utility functions allowing the computation of the utility for the user of an applica-
tion variant given the current user needs and available computing and communication
resources. The utility functions are designed and implemented with the aim of dynami-
cally measuring the benefit of a given variant.

In this paper, the current MADAM approach is extended to enable the adaptation
planning process to leverage the deployment (and possible re-deployment) of the appli-
cation components in a distributed mobile computing infrastructure. Such an infrastruc-
ture will usually consist of several nodes connected via one or more communication
networks. Distributed adaptation planning can then be used to increase the performance
of the user application and to minimize the latency and the communication overhead
– as in classical grid-like infrastructures – or yet to increase the availability of the end
user service.

The main contribution of this paper is the combination of a resource management
framework and utility-based adaptation reasoning used to manage distributed mobile
adaptation. The aims of the resource management framework are (i) the modelling of
the resources of the distributed infrastructure so as to hide the heterogeneity of the
infrastructure and to provide a uniform and generic method to access the resources
and (ii) resource control and management, both locally in one node and globally by
maintaining a global view of the distributed computing infrastructure composed of a
set of discoverable resources. The adaptation reasoning uses the resource management
framework to discover the available and surrounding resources (the different networks,
servers, etc.), select the best placement using the utility functions and finally allocate
the selected resources with the associated amounts.

We start the presentation of this paper by a motivating example in section 2. Then
section 3 presents the overall MADAM middleware-centric approach for the manage-
ment of distributed adaptation. The resource management framework , as part of the
proposed middleware, is presented by the section 4. Section 5 explains how the adap-
tation manager interacts with the resource manager component to perform distributed
adaptation reasoning. An implementation status is given in section 6. Finally, section 7
discusses some relevant related works before concluding in section 8.

2 Motivating Example: On-Site Worker Application

The following scenario shows how self-adaptation is crucial to retain the usefulness of
the application across typical context changes. The scenario describes an application,
which is used to assist a maintenance worker with on-site work. Because of the nature
of her work, the worker may not always be able to visually interact with the mobile

1 MADAM is a European IST Project [3].

106 M. Alia et al.

device (e.g. a PDA running the application). Consequently, the application is designed
to offer two modes of user interaction: visual and audio interfaces. The visual inter-
action communicates with the user with visual messages (e.g. text in popup windows)
while the audio interaction uses the PDA’s speakers and microphone to communicate
information to and from the user.

Consider the case where the worker is in her office, interacting with the PDA in
order to prepare the application for the on-site visit. In this case, the application has
the full attention of the user, and consequently the visual interaction is selected as it is
more responsive (e.g. faster interaction) and more resource efficient (i.e. requires less
memory and CPU, and no networking). But when the worker starts working on the gear
to be maintained, the application switches to audio interaction, thus releasing the worker
from the burden of having to visually interact with the application. Finally, when the
network is sufficiently fast and cheap, and the resources are low (e.g. because the PDA
starts other applications as well), the application switches to the audio mode where the
speech-to-text component is hosted by another computer, for example a pc at the site.
As illustrated by this scenario, the main effort of the self-adaptation mechanism is to
monitor the context (i.e. the status of the hosting device and the user), and dynamically
respond to changes by selecting the most appropriate application variant. To keep things
simple, this scenario considers three modes only: the visual, the audio, and the audio
with remote text-to-speech processing modes.

This scenario demonstrates that certain applications can improve their provided util-
ity by switching between alternative application behaviours and deployment. It there-
fore stresses the need for a distributed resource management framework for the
management of the distributed adaptation.

3 Distribution Adaptation Management

We focus on the resources directly surrounding one mobile user such as the handheld
device, the home PC, or the laptop in the suitcase. This collection of computers together
with the communication networks they are connected to, is referred to as an adaptation
domain Within an adaptation domain all computers run an instance of the MADAM
middleware and there is one client (the handheld device) and zero or more servers. The
domain is formed dynamically by the means of a discovery protocol, whereby servers
regularly advertise their presence, and the client keeps track of available servers. Servers
may be shared, meaning that they are members of more than one domain. All the servers
in a domain have a network connection to the client and servers may be connected to
other servers.

The client runs the adaptation control loop and manages the adaptation of the set of
active applications, including (re)deployment of their components on the resources in
its domain, seeking to maximise the utility to the user.

The applications running inside a domain may depend on services provided outside
the domain. This may include both web services and shared peripherals. Discovering,
selecting and binding to suitable service instances is also part of the responsibility of
adaptation management, as well as replacing or removing the need for services that
disappear or otherwise break the service level agreement. However, this is outside the

Managing Distributed Adaptation of Mobile Applications 107

A
daptation
M

anager
M

anager
C

ontext

Remote
node

Remote
node

Core

Adaptive Element
Architecture

Fig. 1. MADAM Adaptive Element Architecture

scope of this paper. Here we focus on adapting the deployment of the components of
the active applications on the resources available inside an adaptation domain.

3.1 MADAM Adaptive Element Architecture

Figure 3.1 shows the architecture of an instance of the MADAM middleware, which
represents an adaptation control loop in one node. Its main components are the core, the
adaptation manager and the context manager. The core provides platform-independent
services for the management of component instances including application components,
context components, and resources that are also reified through components. The man-
agement of such components involves the supporting of lyfecycle operations such as
loading, unloading, binding, unbinding and setting parameters of components. This is
implemented using reflective mechanisms similar to those in Fractal [5] and Open-
Com [6].

The Adaptation Manager is responsible for reasoning on the impact of context
changes on the application, determining when there is a need to trigger adaptation of
the application, and for selecting an application variant that best fits the current context.
The Context manager is responsible for managing and monitoring contexts relevant for
the adaptation. It manages the contextual information available to the node, including
the execution platform, with its networks and computing resources, and the physical
environment information such as light and noise and user needs [7]. Furthermore, as
the context manager enables distributed context information sensing and aggregation
operations, additional services such as network and node discovery and context sharing
are enabled.

3.2 Adaptation Approach: Property-Driven Variability

The working of the MADAM middleware is based on architectural reflection, meaning
that the middleware maintains models of the running applications, with adaptation ca-
pabilities modelled explicitly in the form of variation points. It also maintains models
of the user needs and the computing and communication resources available within the
adaptation domain. These models are represented according to the conceptual model
depicted in figure 2.

We view a software system and its context as a system of interacting entities. Entities
may represent applications, instances of software components making up applications,

108 M. Alia et al.

Fig. 2. Conceptual adaptation model

computing or communication resources, the user, and elements in the environment
which influence the user needs. Entities interact with other entities by providing and
making use of services through ports. A port represents a service offered by an entity
or a service needed by an entity. Entities may be composed of smaller entities, allowing
for a hierarchic structure. Distribution is modelled by dependencies of software com-
ponents on resource entities representing computing devices.

To model variation points, both in the application and in the computing infrastruc-
ture, we introduce the concept of entity types. An entity type defines a class of entities
with equivalent ports which may replace each other in a system.

With these concepts, we are able to model the architecture of an adaptive application
as a possibly hierarchical composition of entity types, which define a class of applica-
tion variants as well as a class of contexts in which these applications may operate. The
latter include the computing infrastructures, on which the applications may execute. In
addition to this , we need a way to enable the derivation of the software variant and
its deployment on the available computing infrastructure that best fits the current user
needs. Our approach is based on property annotations associated with the ports. The
property annotations characterises the service provided or required by the port. For ex-
ample, a property annotation might denote the response time of a service provided by
an application, the latency of a communication link, the maximum latency tolerated by
an application, or the noise level at the current location of the user.

Property annotations allow us to reason about how well an application variant
matches its context, by comparing the properties of the services provided by the ap-
plication with the properties required by the user, and the properties expressing the
resource needs of the application with the property annotation describing the resources
provided by the current computing infrastructure. The match to user needs is expressed
in a utility function associated with each application. By default the utility function is a
weighted mean of the differences between properties representing user needs and prop-
erties describing the service provided by the application, where the weights represent

Managing Distributed Adaptation of Mobile Applications 109

Fig. 3. Application Compositions

priorities of the user [8]. However, the developer may also provide a tailored utility
function for an application. The following section shows how this model is applied to
our motivating example.

3.3 Example Revisited

The architecture of our application example consists of four components namely the
main logic, the visual UI impl, the audio UI impl, and the TTS components (see figure
3). The main logic component encodes the basic control loops of the application, and
is responsible for the functional implementation. This component has one dependency
only: the UI type. This type can be interchangeably provided by any of the three imple-
mentations: Visual component impl, the Audio UI local, and the Audio UI remote.

By using these basic components as building blocks, the application can be config-
ured in three different compositions (i.e. variants). The three possible compositions are
as follows: (i) the main logic component is connected to the visual UI component, (ii)
the main logic component is connected to the audio UI component which is itself con-
nected to a local instance of the TTS component, and (iii), the main logic component is
connected to the audio UI component which is itself connected to a remote instance of
the TTS component (i.e. on a server node).

Regarding properties annotations, as it is illustrated in figure 4, our application ex-
ample is modeled around two main properties: the response and handsfree. At runtime,
the adaptation process tries to match the required properties to the offered ones, some-
thing which is depicted by the depicted utility function. This function is expressed as
a weighted average of the user’s need for handsfree functionality and quick response
time. The preference among the two is controlled with the c1 and c2 parameters (where
higher c1 indicates greater dependency on the handsfree functionality, and greater c2
indicates higher dependency on the response time).

Concerning the UI type, again the offered and needed properties are the same as
for the application, as it is shown in the figure. In the case of using the ”Visual UI”
implementation, the response and the handsfree properties offered take a fixed value.

110 M. Alia et al.

Fig. 4. Application variants properties

Similarly, when the ”Audio UI”implementation is used where the TTS component is
local, the two properties are also of fixed value. Furthermore, the required bandwidth is
0 (as no networking is involved). In the case of the ”Audio UI” implementation where
the TTS is remotely deployed though, the response is expressed by a function which
expresses that the value depends on the bandwidth, which is reasonable as the network-
ing affects the way the two nodes interact. In this case, the bandwidth is also set to a
fixed value (i.e. 20) which is the minimum required.

4 Resource Management Framework

We understand a resource simply as a reusable entity in the system, that is employed
to fulfill the resource request by a resource consumer. In our adaptation approach pre-
sented in the previous section, dependencies of a given application on resources are
expressed through properties. Therefore, the resource management component is an in-
dispensable component to the adaptation manager in order to enable deciding for the
appropriate application variant and (re)deployment within an adaptation domain with
respect to the user needs. To achieve that, the resource management framework should
provide facilities for discovering, monitoring, allocating and releasing, and configuring
resources.

4.1 Distributed Infrastructure Resource Model

A prerequisite for allowing the observation of resources is to model them so that their
runtime behaviour is reified. Resources are modeled uniformly as special entities ac-
cording to our conceptual model (see figure 2). In one hand this allows hiding the het-
erogeneity of the different resources and in the other hand, it facilitates their runtime
management as every component instance.

As shown in figure 5, a resource may be atomic - e.g. network and computational
node resources -, or composite - e.g. clusters of nodes -. A resource has a type and
all resources of the same type provide the same set of services types which are quali-
fied with a set of properties. These properties includes particularly QoS characteristics
that represents the usage and the capacity of consumable resources. More precisely,
we distinguish between three types of resources namely node, network and peripheral
resources.

Managing Distributed Adaptation of Mobile Applications 111

Connectable to

Resource Entity

ResourceService QoS−Property

Port

getUsage(): QoS−Property

getCpacity(): QoSProperty

ConsumableService
PeripheralNetwork

0...n

NodeResource

Fig. 5. Distributed infrastructure resource model

A node resource represents any computational node in the system that may host
potential application components on behalf of the middleware using the adaptive ele-
ment architecture. This resource type provides services such as memory and CPU used
to execute component instances. For the particular case of adaptation domain man-
agement, one can distinguish between client (master) and server (slave) nodes. Server
nodes can be viewed as grid-like computational server resources, while client nodes
represent smaller (e.g. handheld) computers with fewer capabilities and additional lim-
itations (e.g. battery and memory space) which should also be taken into account during
the adaptation.

A network resource is fundamental to distributed infrastructures which use it to
reach to and connect with different remote resources. Particularly, in our mobile set-
ting, a handheld node may have the opportunity to use multiple network connections
alternatives (WiFi, Bluetooth, GPRS, etc) between other nodes. This leads the adapta-
tion manager to exploit and to select the appropriate network connections: for example
the one with a good bandwidth, the most secure, the one that increases the availability
or yet the least expensive connection. In the figure 5, a network connection may exist
only between non-network resources and other resources. The implementation of such
connections requires composite channel components (proxies, stubs, etc) which are not
modeled in the figure. The main common services provided by a network resource are
send and receive where the consumption is qualified using the throughput property.
Depending on the underlying network technology additional properties such as those
related to collision and errors sent or received and signal or noise level (wireless net-
works) may be considered to perform the adaptation.

A Peripheral resource covers the rest of the resources such as remote displays,
printers and sensor devices. In our approach, these resource types are handled as ap-
plication components in the sense that the adaptation manager has to discover the pe-
ripheral component services (equivalent to peripheral drivers) and then compose (i.e.
connect) them with the application components following the required and provided
dependencies.

In our example (see figure 4), the different needed properties of the application com-
ponents properties (cpu, memory, network, etc.) are used to derive and discover all
the exploitable resource types within the user adaptation domain namely the handheld
device, the current media server and available networks. All these resources and the
services they provide are reified through component.

112 M. Alia et al.

Global Resource
Manager

Required interface
Provided interface

Adaptive element server node

Local Resource
Manager

MobileIP Network
Manager

interface

Context
Manager

Adaptation
Manager

Client node
interface

Global Resource Management

Bindings to remote
Local Resource Managers

Core
Network Management

Local Resource Management
interface

Fig. 6. Distributed resource management architecture

4.2 Distributed Resource Management Architecture

Assuming the above resource model, the resource manager provides a set of services
for the exploitation and the management within an adaptation domain. Figure 6 presents
the architecture of the distributed resource manager which is plugged to the adaptive el-
ement architecture presented in section 3.1. A main principle of the MADAM approach
for the management of distributed resources is the separation between the Local and the
Global resource manager components.

The local resource manager is part of the core middleware component. It provides
a base level of manageability (access, observation and allocation) through the Local
Resource Management interface of the local resources entities present in one
node (either at the server or the client nodes). It also offers functionalities related to
the network detection and connection management by interacting with the Network
Management interface provided by the primitive MobileIP network manager compo-
nent. Although this component hides the underlying heterogeneity by providing uni-
form resource access, its implementation depends highly on the underlying hardware
resource characteristics.

The Global resource manager is only present at the client middleware node to be
used by the Adaptation manager. It maintains the distributed resource model by provid-
ing a mediation interface, the Global Resource Management, that federates the
access and the search for all the available and discoverable resources within an adapta-
tion domain. The following sections present the different services provided by the these
different components.

Resources discovery. The preliminary operation before performing any adaptation rea-
soning is the discovery of the available distributed resources and more generally of
the available resource services. The adaptation manager uses the Context manager [7]
component to search for remote resources and the Local resource manager to look for
the locally available resources. The Context Manager supports plugging different al-
ternative technologies such as TCP/IP, UPnP and Bluetooth for remotely discovering
available resources and disseminating information across them. Furthermore, the pro-
posed framework supports configuring the resource discovery to use either a pull or
push policy. In the push policy, available resources and services are actively discov-
ered just before an adaptation reasoning process is started. In contrast to this, the pull

Managing Distributed Adaptation of Mobile Applications 113

policy instructs the nodes to periodically disseminate their context information and at
the same time always maintain a local model of the distributed context in the environ-
ment including resources. This configuration is possible because of the flexibility of the
Context Manager which supports both of these strategies. Using either of these two al-
ternatives depends on the state of the system, as the pull policy is more energy efficient
(less communication) but less agile compared to the push policy.

The detection of the surrounding network resource types (WLAN, Bluetooth, WiFi,
etc) is delegated to the MobileIP network component. Recall that these networks may
potentially be used either to join a network (e.g. WLAN), or to be used as protocols
for discovering other resources (e.g. Bluetooth devices). Another important discovery
feature is the search for the different network paths between two given nodes. As already
discussed, this leads the adaptation manager to select the different connections between
the distributed component so that to maximise the user utility.

Resources allocation/releasing. Resources sharing between different adaptive appli-
cations and potentially between many adaptation domains involve mainly reserving and
releasing operations. These operations are provided at both levels the local resource
manager and the global resource manager components interfaces.

The Adaptation Manager calls such operation after the planning has been performed,
the required resources types (including remote nodes) have been selected, and the
amount of resources has been calculated. This operation invoked on the Global Re-
source Manager uses then the local resource managers of the different remote resources
for the registration of the allocation or the releasing resulted from the new selected con-
figuration. The Adaptation manager exploits resources information provided during the
discovery, including theirs location (e.g. IP adresses), to establish remote bindings with
the remote Local resource managers provided interfaces. For that, a binding framework
(see deliverable D2.3 [3]) similar to the one presented in [9] has been adopted. The lo-
cal resource manager maintains the different reservations per resource service and client
ID. Including the client ID allows the local resource manager to release all the reserved
resources for a given client in case of the client node, i.e. the mobile user, becomes
unreachable.

Resources observation. The Local resource manager allows adding and removing re-
source listeners so that they are notified of resource usage changes that may trigger the
adaptation process. The context manager is responsible for the management of the pool
of context listeners, including resource listeners, and for delegating these changes to the
adaptation manager.

Network management. The network management facilities are provided by the the
MobileIP network component tailored for mobile mobile in IP networks. This compo-
nent provides mainly operations for seeking for surrounding networks as already dis-
cussed and also the management of the connections (and disconnections) to (or from) a
given network. When a given network has been selected, the adaptation manager con-
nects to that network. Conversely, if the node was already connected to one different
network type, then the adaptation manager should disconnect the node from this net-
work before switching to the newly selected one. Note that in the current specification

114 M. Alia et al.

and implementation of the MobileIP Network Manager, a node is only connected to one
network type at any given time.

Resources configuration. Our framework exhibits also configuration methods that al-
low setting new properties values to certain resources. In some MADAM scenarios (see
D1.2 [3]), some adaptations are simply implemented by tuning resource parameters.

5 Distribution Adaptation Reasoning

When replanning is triggered, the adaptation manager uses the application model, the
user needs model and the resource model to select the combination of application vari-
ants and their deployment on the available resources that best fits the current context.
This involves the execution of the following pseudo algorithm:

v: represents an application variant from the search space V. It associates
for each component type an implementation and a node where to be deployed.
U: is the utility function that takes as input the
variant properties and the different contexts information including resources.

1: begin
2: reserve and get resources // interaction with the Global resource manager
3: for each variant v from V
4: aggregate resource needs of v
5: if the resource needs of V can be satisfied with available resources then
6: compute the utility U(v)
7: if U(v) is better that the utility of the best variant set found so far then
8: keep v
9: release and allocate resources // interaction with the Global resource manager

10: end

The resource needs of a variant set are expressed as dependencies on resource types,
and in an adaptation domain there may be several instances of each type. For example
there may be several servers and several networks with different capacities. Therefore
the adaptation manager must also decide a mapping. As long as resource needs are fixed,
i.e. given as constants, this is trivial. All mappings that satisfy the resource needs are
valid and have the same utility, so the first one found that satisfies the needs is selected.

However, fixed resource needs is not always an adequate model of an application
variant (or component. In many cases a range given as a minimum and a maximum
amount is a better model. The variant needs at least the minimum amount to execute
properly, but if more resources are available the provided Qos will improve until the
maximum amount. Allocating more resources than the maximum amount does not im-
prove the provided QoS. The MADAM application modelling support such open spec-
ification of resource needs.

In the presence of open resource needs, the utility of a variant set i) depends on how
its components are deployed on alternative nodes of the same type, ii) on how remote

Managing Distributed Adaptation of Mobile Applications 115

connections are mapped on available networks, and iii) how resources are distributed
between the components deployed on each node and the connections mapped on each
network.

Since on the class of computing infrastructures that we are targeting, cpu and net-
work resources tend to be distributed between competing programs on a fair share basis
and memory on a first come first serve basis, all outside our control, we have to base
the computation of the utility on an educated guess of how resources will actually be
allocated.

6 Implementation Status

The resource and the adaptation framework presented in this paper have been imple-
mented as part of the MADAM adaptation middleware. The MADAM middleware is
programmed in Java and runs both on Windows XP on ordinary PCs and on Windows
Mobile on HP iPAQ handheld computers. The monitoring and control of network re-
sources (i.e. the MobileIP Network Manager component) is based on the Birdstep2 Mo-
bile IP product which supports most of the existing networks. The middleware is being
used in the development of two pilot applications by the industrial partners of Madam.

The Middleware can be started in either master or slave mode. Slave nodes basically
only manage resources and monitor other context information and perform reconfig-
uration operations in response to reconfiguration requests from a master. Adaptation
domains are formed by nodes sending regular multicast messages informing potential
neighbours about their presence. This limits an adaptation domain to a local area net-
work. The communication between the master and its slaves is based on RMI.

The adaptation scenario used in the example is present in both pilots, along with a
number of other scenarios exercising both distribution and other forms of adaptation.
A previous version of the middleware, without support for distribution adaptation but
built on the same adaptation approach, has been used successfully in several pilot ap-
plications and confirms that the general approach is feasable and quite satisfactory (see
deliverables D5.2 and D6.2 [3]).

7 Discussion and Related Work

What makes our work different is primarly the scope of the targeted adaptation in a
mobile environment and the variability-based approach used to implement these adapta-
tions. As a result, the proposed resource management framework is tailored towards of-
fering specific functionalities to enable distributed adaptation planning in the MADAM
middleware. In addition, the proposed architetcure is flexible and configurable. Firstly,
the resource management is not bound to a particular resource type but deals with arbi-
trary resource types. Indeed the presented resource model is uniform and generic, im-
plying that there is no inherent limitation in the resource model with respect to the range
of resource types the resource model can represent. The properties which characterise
these resource types enable the adaptation reasoning to affect and compose resource

2 www.birdstep.com

116 M. Alia et al.

types to a given application components so that the required behaviour is preserved.
Secondly, the modularity of the resource management framework makes it configurable
in the sense that its components may be deployed and configured to handle different
requirements. For example, when there is no requirment for distribution (standalone
mode), the resource management framework can be configured with the Local Resource
Manager only, as in this case there is no need for the Global Resource Manager and the
MobileIP Network Manager. In this configuration, the Adaptation Manager is able to
locally adapt the application without involving distributed third parties. Finally, another
token of flexibility of our framework is that it can be configured to support both push
and pull resource discovery strategies.

Within the context of mobile environment, several systems and middlewares have
been proposed to target the management of the adaptiveness of mobile applications.
However, from our knowledge, most of them either are centralised or do not provide
an explicit architecture of the resource management eventhough they support distribu-
tion (e.g. Aura [10]). For example, [11] proposes a resource model that is the basis of
a framework for the development and deployment of adaptable applications. This re-
source model is used to model and declare the resources required by an application and
the ones supplied by the hosting environment. To reason on the goodness of a resource
set allocated to satisfy a given adaptation a utility function is used as in our approach.
While this work target similar adaptations, the proposed model does not support dis-
tribution and does not address the management concern. Also, application resources
needs are specified for each possible adaptation. This constitues another limitation of
this model to be viable in our work since compositional and planning-based adaptation
may lead to a huge number of possible adaptations.

In the context of Grid computing, many active researches have focused on designing
resource management architectures such as Globus [12] and GridKit [13]. Theirs ap-
proach exhibits some similarities with ours in the sense that they distinguish between
the local and the global resource managers for the management of distributed resources.
Furthermore, from an architectural point of view, our framework has similarities with
the GridKit architecture [13] which also proposes a flexible and configurable frame-
work. However, all these systems do not target and consider adaptation types related to
mobile applications such as those related to the resource limitations of handheld device
and the support of multiple network connection alternatives between different nodes.

It is to be clarified that the computational complexity of distributed (re)deployment
is not addressed in this paper. It is well known that this problem is NP-Hard [14] and
therefore scalability is a serious concern. However, so far, our experience indicates that
the mobile applications and environments that we target are sufficiently constrained
both in term of the number of software variation points and the number of nodes and
adaptations within an adaptation domain, that acceptable performance can be achieved.
Indeed, for example the complexity – i.e. the adaptation reasoning – of our pilot appli-
cation still inside what we found could be handled in our experiments with the previous
centralised version (1000 variants gave adaptation times around 1 s). However, the
”heartbeat” messages and the RMI calls for communicating between the master and the
slaves seems to be expensive and particularly from the handheld device side. There-
fore, further code optimisations and experiments are needed to improve the current

Managing Distributed Adaptation of Mobile Applications 117

implementation. Furthermore, we are also considering other technologies than RMI for
new experiments.

8 Conclusion

In this paper we have discussed a general approach for distributed adaptation and sub-
sequently a distributed resource model and management tailored for deployment of
adaptive services in a mobile environment. Furthermore, we have presented middleware
level mechanisms neccesary for maintaining an up-to-date model of the resources avail-
able in the run-time environment of a mobile device. The resulting resource framework
has been realized as part of the MADAM planning-based middleware. The framework
is configurable and extensible and can be customised and tailored to specific needs
through support for middleware configuration. Furthermore, this framework identifies
and covers new functionalities and features related to mobile computing which are not
common and not covered in the classical grid-like resource management. The use of the
resource management in adaptation planning was demonstrated through a real adaptive
application that has been implemented on top of the MADAM middleware.

As part of the ongoing projects, two research directions are considered. Firstly, we
plan to extend our approach to cover adaptation in ubiquitous computing environments.
Secondly, we plan to study the possibilities of projecting and porting the proposed adap-
tation approach into the context of service oriented computing. This leads us to address
the problem of decentralised planning in the presence of many autonomous adaptation
domains. This will most likely also require the consideration of more elaborate resource
management features that handle complex planning approaches such as those based on
market-based and learning automata mechanisms.

Acknowledgements

This work is part of the MADAM project and the authors would like to thank all in-
volved partners.

References

1. Amundsen, S.L., Lund, K., Eliassen, F.: Utilising alternative application configurations in
context- and QoS-aware mobile middleware. In: Eliassen, F., Montresor, A. (eds.) DAIS
2006. LNCS, vol. 4025, pp. 228–241. Springer, Heidelberg (2006)

2. Poladian, V., Sousa, J., Garlan, D., Shaw, M.: Dynamic configuration of resource-aware ser-
vices. In: Proceedings of the 26th International Conference on Software Engineering (ICSE)
(2004)

3. Madam Consortium: Mobility and ADaptation enAbling Middleware. Delivrable are open
here http://www.ist-madam.org/consortium.html

4. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjrven, E.: Beyond design time:
using architecture models for runtime adaptability. IEEE Software (2006)

5. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.: The fractal component
model and its support in java: Experiences with auto-adaptive and reconfigurable systems.
Softw. Pract. Exper. 36(1112), 1257–1284 (2006)

 http://www.ist-madam.org/consortium.html

118 M. Alia et al.

6. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J.: A component model for
building systems software. In: Proceedings of IASTED Software Engineering and Applica-
tions (SEA’04) Cambridge, MA, USA

7. Mikalsen, M., Paspallis, N.J., Floch, E.S., Papadopoulos, G.A., Ruiz, P.A.: Putting context
in context: The role and design of context management in a mobility and adaptation enabling
middleware. In: 7th International Conference on Mobile Data Management (MDM’06),
Nara, Japan, IEEE Computer, Washington, DC (2006)

8. Alia, M., Eide, V.S.W., Paspallis, N., Eliassen, F., Hallsteinsen, S., Papadopoulos, G.A.: A
utility-based adaptivity model for mobile applications. In: The IEEE International Sympo-
sium on Ubisafe Computing (UbiSafe07), IEEE Computer Society Press, Washington, DC
(2007)

9. Parlavantzas, C.G., Blair, G.: An extensible binding framework for component-based mid-
dleware. In: Proceedings of 7th international conference on enterprise distributed objects
computing, IEEE computer society, New York (2003)

10. Sousa, J., Garlan, D.: Aura: An architectural framework for user mobility in ubiquitous com-
puting environments (2002)

11. Mancinelli, F., Inverardi, P.: A resource model for adaptable applications. In: SEAMS ’06.
Proceedings of the 2006 international workshop on Self-adaptation and self-managing sys-
tems, pp. 9–15. ACM Press, New York (2006)

12. The Globus Project : Resource management: The globus perspective, presentation at globus-
word, available at http://www.globus.org/ (2003)

13. Cai, W., Coulson, G., Grace, P., Blair, G.S., Mathy, L., Yeung, W.K.: The gridkit distributed
resource management framework. In: EGC, pp. 786–795 (2005)

14. Musunoori, S.B., Horn, G., Eliassen, F., Alia, M.: On the challenge of allocating service
based applications in a grid environment. In: Proceedings of the International Conference on
Autonomic and Autonomous Systems, vol. 43, IEEE Computer Society Press, Los Alamitos
(2006)

http://www.globus.org/

DOLCLAN – Middleware Support for Peer-to-Peer
Distributed Shared Objects

Jakob E. Bardram and Martin Mogensen

Department of Computer Science, University of Aarhus
Aabogade 34, DK–8200 Aarhus N., Denmark

{bardram,spider}@daimi.au.dk

Abstract. Contemporary object-oriented programming seeks to enable distrib-
uted computing by accessing remote objects using blocking remote procedure
calls. This technique, however, suffers from several drawbacks because it relies
on the assumption of stable network connections and synchronous method invo-
cations. In this paper we present an approach to support distributed programming,
which rely on local object replicas keeping themselves synchronized using an un-
derlying peer-to-peer infrastructure. We have termed our approach Peer-to-peer
Distributed Shared Objects (PDSO). This PDSO approach has been implemented
in the DOLCLAN framework. An evaluation demonstrates that DOLCLAN can
be utilized to create a real distributed collaborative system for ad-hoc collabora-
tion in hospitals, which demonstrates that the approach can support the creation
of non-trivial distributed applications for pervasive computing.

1 Introduction

Support for distributed computing in contemporary production OO languages is based
on the remote-procedure call (RPC) paradigm [8] where methods on single-copy ob-
jects are accessed remotely from other objects. Both Java RMI and .NET Remoting are
examples of this approach. A fundamental challenge to this paradigm is its inherent
assumption of a reliable infrastructure. Object registration and lookup is primarily done
through initialization, since remote object invocation assumes that objects stay on a
stable host machine with reliable networking connections. Remote object invocation is
furthermore done synchronously with blocking method calls. When programming ap-
plications for pervasive computing environments these assumptions do no longer hold.
Such an infrastructure is completely different, consisting of a heterogeneous set of more
or less stable host devices with intermitted network connections. Using RPC, RMI or
similar under these circumstances leads to highly unstable applications, unless the pro-
grammer goes through a lot of work of manually handling all sorts of networking and
runtime exceptions.

In order to provide a more resilient programming environment for this unstable run-
time infrastructure we propose a new approach for distributed programming, which rely
on local object replicas keeping themselves synchronized using an underlying peer-
to-peer infrastructure. We have termed our approach Peer-to-peer Distributed Shared
Objects (PDSO), which has been implemented in the DOLCLAN framework. In this
approach, each participating peer maintains a local copy of the object and executes

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 119–132, 2007.
c© IFIP International Federation for Information Processing 2007

120 J.E. Bardram and M. Mogensen

processes that keep these replicas coordinated in real time. This approach has a range
of advantages. First, it keeps applications responsive because the applications are much
more robust with respect to network latency. Second, applications can continue to run
when disconnected from the network. Third, computational and network load is distrib-
uted across the whole network of clients and is no longer tied to the machine hosting
the remote object. Fourth, finding and joining a network may be simplified since all
participating clients can function as the gateway to the network. There are, however,
also a range of drawbacks to this approach, mainly associated with the overhead of dis-
tributing and managing the placement, synchronization, and replication of data, as well
as handling the underlying communication technology and topology. The purpose of
DOLCLAN is to help the programmer handle this real-time object synchronization of
distributed objects.

The main contribution of DOLCLAN is a novel peer-to-peer distribution mechanism
for object sharing which is especially suited for the creation of collaborative applica-
tions in a pervasive computing environment. This object sharing mechanism provides
optimistic synchronization strategies, easy deployment of distributed applications, and
support for different delivery guarantees – all of which can be accessed by the applica-
tion developers, if needed.

1.1 Related Work

Different suggestions to improve on the shortcomings of existing RPC-style interac-
tion with remote single-copy objects in RMI, CORBA, .NET Remoting, and DCOM
have been suggested. For example, asynchronous RPC [30,18], and CORBA Event and
Notification Services [22]. One specific approach to improve Java RMI is to support
dynamic caching of shared objects on the accessing nodes, as done in Javanaise [13].
Research has also been done within asynchronous method invocation [18,30], tuple
spaces [10,19], or more generally with publish-subscribe interaction styles [21]. All
of these approaches mitigate the challenges of intermitted network connections, and
lack of scalability and performance in RPC. But they do not support object replication
and reconciling, and therefore does not allow the application to continue to access and
update the distributed objects while disconnected from the network. In certain tuple
spaces, a global virtual data structure is achieved by letting each device hold a local
copy of a tuple space which is transparently shared with the tuple space of the connected
devices [23,9]. By accessing its local tuple space, each component has efficiently access
to the global tuple space. Hence, actions that are perceived as local actually has global
effects. This approach is similar to distributed objects but does not as such support dis-
tributed object-oriented programming, and is not designed to disconnected work since
it does not provide support for reconciling work done while disconnected.

Orca [4,3,2] is an object based programming language and distributed shared mem-
ory system (DSM). Orca is based on distributed coherent objects, e.g. Orca does not
invalidate objects on write, but propagates the write to all copies of the object. This is
done by sending all writes to a primary copy of an object called the object manager,
which then updates all copies. Coherence is ensured via a two-phase commit protocol
and by sending operations using totally ordered group communication, so all updates
are executed in the same order at all machines. To a certain respect, our work extends the

DOLCLAN – Middleware Support for Peer-to-Peer Distributed Shared Objects 121

principles of Orca, including using a write-update protocol rather than a write-invalidate
protocol to address the core consistency challenge in object replication. Our infrastruc-
ture also relies on totally ordered group communication. Our work, however, is different
in at least two ways. First, we rely on direct object-to-object data synchronization and
do not use specialized object managers counting read and write operations. This signif-
icantly simplifies program development and deployment. Second, our language support
is part of the widely used C# language and does not require a specialized language like
Orca.

Globe [1,15] is an object oriented framework for developing wide area distributed
applications using distributed shared objects (DSO). On the one hand, the Globe DSO
lets the application programmer concentrate on implementing business logic and not
worry about distribution and communication. On the other hand, Globe recognizes the
need to be able to implement object specific policies on issues such as distribution,
replication, and concurrency controls. By implementing a ‘replication sub-object’, the
programmer can create a specific replication policy. Depending on the implementa-
tions of the sub-objects, the local object will function as a proxy object, forwarding
requests to a real object. Alternatively, the local object can carry out calculations on a
local copy of the object state and – depending on the implementation of the replica-
tion sub-object – the new state can be propagated to other instances of the distributed
shared object. This possibility to override default functionality by implementing spe-
cific sub-objects yields a flexible, highly extensible, and scalable framework for creat-
ing distributed applications. The approach, however, comes with a huge overhead for
the programmer who has to design and implement replication policies in the replication
sub-objects.

Our work is situated within this line of research on distributed shared objects and
makes contributions primarily in three aspects: (i) we provide language support for a
widely used OO language (as compared to special languages like Orca), (ii) we have a
simple peer-to-peer distribution and synchronization mechanism for shared objects, and
(iii) we support an optimistic synchronization strategy based on user-defined merging
methods in write-update protocols.

2 Peer-to-Peer Distributed Object Sharing

The fundamental principles behind the design of our peer-to-peer distributed shared
object approach are:

Physical distribution. Instead of viewing a distributed object as an entity running on
a single host with others accessing it remotely, we physically distribute a copy of
the object to all hosts using this object in an application. Hence, applications ac-
cess and use objects as local objects which ensures fast responsiveness. Objects are
distributed on creation (remote instantiation) and removed from the local address
space on deletion (distributed garbage collection).

Synchronized objects. The state of the distributed shared object is kept synchronized
in real time, if possible. Hence, state changes are propagated to all object replicas.
State synchronization is handled by the underlying infrastructure, but the objects

122 J.E. Bardram and M. Mogensen

themselves are involved in potential conflict resolution, using domain specific con-
flict resolution algorithms.

Peer-to-peer update. Physically distributed objects rely on a peer-to-peer – or object-
to-object – synchronization strategy. Hence, no central entities like an object broker
or an object registry are involved in object registration or lookup. Each object is
responsible for looking up and synchronizing with its replicas. This principle makes
distributed programming simple from the developers point of view since there are
no configuration overhead associated with the development and deployment of a
distributed application.

Responsive. Objects are used in highly interactive applications and needs to embody a
fast update protocol. This rules out pessimistic concurrency control which typically
uses some kind of distributed transactional scheme [27,26] or distributed locks [17].

Distribution-aware. Objects are distribution-aware. This means that a shared object
must be declared as distributed, must handle potential conflict resolution, and must
consider the kind of delivery guarantees wanted in the network transport layer.
These issues are normally shielded from the application programmer but, as ex-
plained above, we deliberately want these things to surface in the language support
for distributed programming.

The principles involved in peer-to-peer distributed object sharing is illustrated in
figure 1, showing a set of distributed objects with replicas in four different address
spaces (A1–A4), using object-to-object communication pathways to keep the replicas
synchronized and sending remote instantiation and garbage collection events.

The main idea is that a distributed object, called a Peer-to-peer Distributed Shared
Object (PDSO) consists of several local replicas that keep their state synchronized.

Fig. 1. A set of peer-to-peer distributed
shared objects (PDSO) distributed over
four address spaces (A1–A4). Each address
space holds a local replica of the object
which is synchronized by object-to-object
eventing. Address space A5 does not cur-
rently participate in the object sharing but
may join one or more of the objects.

Fig. 2. Five PDSOs (A–E) distributed over four
address spaces (A1–A4). Each address space
hold a local replica of the PDSOs in the groups
the peer is member of.

DOLCLAN – Middleware Support for Peer-to-Peer Distributed Shared Objects 123

Each local replica is identified by an Object Identifier (OID). A PDSO consists of the
set of local replicas with the same IOD. A set of PDSOs can be tied together by use of
distributed variables; we call such a set a group.

To be more precise, we are using the following terms:

OID Object Identifier. The OID is used to name a single instance of a local object
replica. Several local object replicas can have the same OID, but not within the
same namespace.

PDSO Peer-to-peer Distributed Shared Object. A set of local object replicas, that keep
their state synchronized. A PDSO is defined as the set of local object replicas
named by the same OID. I.e. PDSO(s) = {local replicas x|OID(x) = s}

Group A set of PDSOs, defined by the transitive closure of a specified PDSO x. I.e.
all PDSOs in the object graph that can be reached from x.
Group(PDSO(x)) = {PDSO(y)|there is a path
from PDSO(x) to PDSO(y) in the object graph}.

Figure 2 shows five PDSOs distributed over four address spaces. The PDSOs are
named A, B, C, D, and E respectively. Each distributed object is comprised of sev-
eral local replicas, all named with the same object identifier (OID). The local replicas
comprising the PDSO named B have been highlighted. Also shown in the figure are
three groups, namely Group(A), Group(C), and Group(D). The groups are the tran-
sitive closure of the named PDSO. Group(A) is therefore comprised of PDSO(A) and
PDSO(B), whereas Group(D) equals PDSO(D) because the edges in the object
graph are directed. Notice also that two peers, address space A2 and A4, are members
of more than one group. Groups are used as a scoping mechanism enabling peers to join
only a subset of the object graph.

With respect to delivery guarantees from the transport layer we make a key dif-
ferentiation between what we have termed accountable and ephemeral events [5]. In
replicated collaborative architectures concurrency control between events on distrib-
uted clients is absolutely central in order to maintain correct behavior of the distributed
system [24]. We use the term ‘accountable’ for this kind of distributed events, because
the system needs to be accountable for the correctness and timing of these events in
order to create a well-behaved collaborative system. Examples of accountable events
are the classical text insert, move, and delete commands in collaborative editors or the
state changes in general purpose frameworks like Corona [26] or GroupKit [25,12]. An
IP-based infrastructure would use TCP or reliable multicast to distribute such events.
There are, however, a range of other kinds of events which are not subject to the same
kind of accountability. Such events are typically absolute values, independent of previ-
ous and subsequent events, and may even be missing or dismissed if needed. We call
these events ‘ephemeral’ because they are short-lived and transient. Examples of such
events are telepointer events, voice events, and other collaborative awareness events
like the ones in the MAUI Toolkit [14]. An IP-based infrastructure would typically use
multicast datagrams to distribute such events.

We argue that giving the application developer access to these low-level transport is-
sues in distributed computing is important since he can make appropriate judgments
on the choice of delivery guarantees based on application-specific concerns. Such

124 J.E. Bardram and M. Mogensen

concerns are not present in contemporary language support for remote objects, like
Java RMI, CORBA, .NET Remoting, and DCOM1.

2.1 An Example

The PDSOs can be used to construct a model for a distributed application, by connecting
objects via distributed fields within the objects. Such distributed fields can be declared
by using either the accountable or ephemeral keywords, supported by the language
constructs implemented to support the PDSO scheme2. A simple example could be a
model for a distributed eater or Pacman game. The game consists of a game controller
and a game model, which will be used to distribute state between the participating peers.
The model is comprised of a game name, a score, a position of the eater and a list of
stones visible on the board. Figure 3 shows the model represented as an UML diagram.

Fig. 3. UML diagram showing the pre-
sented part of the EaterModel

Fig. 4. ‘The Eater Game’ showing the Pacman,
stones, and the score

The game’s name and the score is modeled as distributed accountable properties.
This enables us to intercept flow control every time the fields are set, and notify the view
and the other participating peers of the change. The position of the eater is modeled by
the DistributedPoint class, which contains two distributed ephemeral properties.
Each property corresponds to the X and the Y position of the eater. The choice of using
ephemeral variables emphasizes speed of delivery rather than delivery guarantees in
changes of the eater position. Finally, the model contains a list of stones, which are
visible on the game board. The stones are kept in a DistributedList, which is a
list created using distributed accountable variables inside PDSOs for holding satellite
data.

When a peer starts an instance of the eater game, it will first obtain a local replica of
the EaterModel and the PDSOs in the transitive closure of this PDSO. After joining

1 It is, however, interesting to note that in SUN RPC the implementer has the choice of us-
ing either UDP or TCP for transporting remote procedure calls and for broadcasting remote
procedure calls [8].

2 The language constructs is beyond the scope of this paper, but has been presented else-
where [20].

DOLCLAN – Middleware Support for Peer-to-Peer Distributed Shared Objects 125

the game, the state of the model will be replicated between the different local replicas.
This is done, by assigning new values to the distributed variables. If a peer for instance
moves the eater, new values will be assigned to the distributed properties X and Y in the
DistributedPoint object. The infrastructure will intercept flow control and prop-
agate the new values around the network. When the new values reaches the designated
local replicas in the other address spaces, it will be set on the corresponding objects.
This will cause the objects to fire the stateChanged event on the objects, which in
turn, will fire the stateChanged events on the local replicas of the EaterModel
and the different views can be updated. The same is true for changes in any stone or the
score. Notice also, that if any of the distributed variables is assigned the null value,
this value will also be propagated around the network. When this is done, the object
which was previously referenced by the distributed variable might become subject to
garbage collection.

If a peer becomes disconnected for a period of time, subsequently reconnecting to
the network, the state of the peer and the state of the network might diverge. In such a
case domain specific conflict resolution methods, specified by the programmer, will be
used to handle conflicts bringing the network back to a consistent state.

3 Infrastructure Support

The proposed concepts presented have been implemented in the DOLCLAN3 in-
frastructure [20], which uses a pure peer-to-peer architecture and supports object distri-
bution, state synchronization, object discovery, peer joining, event ordering, and concur-
rency control. This section describes the system and network architecture (section 3.1)
and the architecture supporting this infrastructure on each participating peer holding the
object replicas (section 3.2).

3.1 System and Network Architecture

Communication between peers can be carried out in several ways. Events and messages
can be either unicasted or multicasted, and both reliable and unreliable communication
channels can be utilized. In our current implementation we have chosen to utilize the
possibilities of multicasting since many peers will have to receive the same information.
Point-to-point connections are possible but would require a quadratic number of unicast
connections between peers or the utilization of a sophisticated routing scheme, which
would impose an extra performance penalty and delay messages. Even though many
peers will have to receive the same information, this is not true for all peers. Therefore
the infrastructure has a control channel for reaching all peers and individual channels
for smaller groups.

Peer-to-peer Distributed Shared Objects require three things of the underlying sys-
tem infrastructure: (i) service discovery which enables a peer to find existing PDSOs,
(ii) peer joining which enables a peer to join a group and get the state synchronized,
and (iii) synchronous object state replication amongst connected peers.

3 Distributed Objects in Loose Coupled Local Area Networks.

126 J.E. Bardram and M. Mogensen

Service Discovery. To find other peers in the network, the joining peer multicasts a
HELLO message on the control channel. This indicates that the peer is looking for an-
other peer which can help it join a group. If one or more peers exist on the network able
to serve the new peer, these peers reply with a HELLO ACK message unicasted to the
joining peer. The message contains information about how to reach the sending peer
and also information about which channels the events for the shared objects are prop-
agated on. This enables the new peer to start listening for events on the event channels
while the state is synchronized via an existing peer. The joining peer now chooses the
peer from which it first receives a reply as its serving peer. It is possible to pick any
peer replying to the HELLO message, as all peers replying will have the same state.
The picked peer will with high probability be a peer residing close to the joining peer
in terms of network latency, thereby optimizing on network latency overhead in the
synchronization of the new peer.

Peer joining. After the service discovery phase, the joining peer will need to synchro-
nize the state between itself and one or more groups. The joining peer may or may not
contain state of its own state.

If the joining peer contains no state information, then it needs to obtain the shared
state from the serving peer. This is done by a process called ‘Just-in-time-eventing’
(JITE) where the joining peer first receives a snapshot of the replicated state while
collecting events from the other peers during the process. After setting the state of the
new peer to the snapshot, the peer also commits the collected events in the correct
order [11,29]. If the events were not collected, then the snapshot approach needs to stop
any work on the shared object until they were synchronized. This would greatly reduce
the responsiveness of the collaborative applications using the infrastructure.

If the joining peer contains state information then the states must somehow be
merged. Such a joining peer with state information may be a peer which has been dis-
connected for a period of time while the user has continued working. The merging or
conflict resolution of state based on the local state and the state from the network is
highly domain specific. In some cases it makes sense to use the most recent state, in
other cases it makes sense to merge the two states, and sometimes the merge is based
on the semantics of the application. The joining peer obtains the network state (using the
JITE approach) and this state is then given to a conflict resolution method implemented
by the application programmer. This enables the programmer to create application spe-
cific conflict resolution algorithms.

Synchronous Object State Replication. Synchronous object state replication keeps
the replicated objects synchronized, while peers are modifying them. The design should
consider basic state change situations, but also be able to handle situations, where two
or more peers modify the same component concurrently.

In order to reduce implementation complexity, maximize end-user responsive-
ness, and minimize communication overhead, the infrastructure utilizes an optimistic
concurrency control mechanism based on absolute state events. Event ordering and
concurrency control is managed by an extended version of the Lamport clock algo-
rithms [16]. The algorithm uses a logical clock and adds the identity of the sending
peer process into the event. Each event is stamped with a timestamp consisting of

DOLCLAN – Middleware Support for Peer-to-Peer Distributed Shared Objects 127

(time,peer,process) which eliminates the possibility that two events should
be stamped with the same logical timestamp. When using this timestamp on each state
change event, consistency on fields can be ensured by applying all events with a higher
timestamp than the latest committed. If an event is received out of order, the event is
simply dismissed. Note that dismissing of events, that is received out of order, will have
no influence on the state of the object because only absolute (and not delta) values are
sent.

The biggest problem with this design is the case where an event message disap-
pears in the network because of unreliable communication channels. This problem
could be eliminated, by using a reliable protocol, but this might imply a huge per-
formance penalty due to the increased communication, as for instance the case with
reliable multicast. Sometimes an application may need delivery guarantees and hence
pay this penalty, and in other cases the application might not care about reliable de-
livery but is more focused on speedy delivery. This is precisely the difference between
accountable and ephemeral events as introduced earlier and in Bardram et al. [5].

3.2 Peer Architecture

Figure 5 illustrates the peer architecture which consists of three layers. The application
layer contains the application which is typically programmed according to the model-
view-controller pattern. Part of the model uses distributed shared objects, which are
located in the distributed model layer. This layer contains the distributed part of the
model, which consists of distributed objects and nothing else.

The communication layer implements the network architecture described in sec-
tion 3.1 and is responsible for the distribution of state changes to other peers and for
managing incoming state changes. This layer is also responsible for the communica-
tion between peers holding replicas of distributed objects. This layer keeps track of
communication (I/O), event ordering, naming services, and the state of the distributed
objects.

Closest to the physical network there are three I/O Controllers controlling one form
of communication each: TCP unicast, ordinary IP multicast, and reliable multicast. A
controller is capable of sending a message to a specified connection point and listen-
ing for incoming messages from other devices. The Communication Controller man-
ages the I/O controllers and new I/O controllers can be added to support other network
protocols.

Management of state change is done by three processes. The JITE Controller con-
trols the Just-In-Time-Eventing mechanism explained above. The JITE controller han-
dles a state change event if such an event arrives and no object that corresponds to
the event is bound in the naming service. When a new object is created from a remote
location, the object is handed to the JITE controller which checks if it contains any
events that should be applied to the object. If such events exist they will be applied and
the state of the object is up to date. The Naming Service is responsible for mapping
distributed objects to names and names to distributed objects and it contains methods
for looking up an object by name and vice versa. The naming service is used by the
distributed object controller. The Logical Time Tracker is responsible for keeping track
of the logical time by updating the time on both incoming and on outgoing messages.

128 J.E. Bardram and M. Mogensen

Fig. 5. The architecture of each peer (host) participating in peer-to-peer distributed object sharing.
The architecture is divided into three layers: application layer, distributed object model layer, and
the communication layer.

The Distributed Object Controller works as a facade between distributed objects
and the communication layer. When a state change occurs in the distributed objects,
the controller will propagate this change to the other participating peers. When a state
change arrives from a remote peer, the controller updates the distributed object.

4 Implementation and Evaluation

The infrastructure supporting the proposed PDSOs and a pre-compiler enabling the lan-
guage support has been implemented. The implementation has been subject to extensive
evaluation including completeness of expressiveness, complexity of use, run-time per-
formance, and concept utility. Due to the focus of this paper, presenting the concepts
of PDSOs, we shall only present a part of the evaluation focusing on performance and
concept utility.

4.1 Performance

Performance evaluation of the DOLCLAN infrastructure has been reported else-
where [20]. This shows that the infrastructure performs well – both with regard to re-
sponse time and memory footprint. In this context, we would however like to highlight
one particular performance measurement, namely the performance penalty introduced
by initiating the propagation of a variable value change.

Figure 6 shows the performance penalty introduced by initiating the propagation of a
variable value change. The test measures the time it takes before variable changes have

DOLCLAN – Middleware Support for Peer-to-Peer Distributed Shared Objects 129

Fig. 6. Performance penalty as a function of number of variable state changes. The graph shows
the time it takes to push the state change event into the network asynchronously.

been sent asynchronously into the network. Note that this test does not say anything
about the time it takes before the remote peers have received the changes. As reliable
multicast protocol we used the Pragmatic General Multicast Protocol (PGM) specified
in RFC 3208 [28]. It is clear from the diagram, that there is a significant difference be-
tween using reliable and unreliable multicast, even if all communication is done asyn-
chronously. The performance penalty using unreliable multicast has been matched as
a linear relationship, while the performance penalty using reliable multicast has been
matched with a polynomial relationship. One of the arguments in this paper, is that
the application developer should be aware of such differences and have the possibility
to make the decisions. This test supports our idea of the need to distinguish between
ephemeral and accountable field types.

4.2 Utility

The PDSO concept and the infrastructure described in this paper, has been used to
create support for ad-hoc collaboration in the activity-based computing (ABC) frame-
work [5,6]. Previously, the ABC framework was designed according to a client-server
architecture and collaboration took place via the activity server. Now, peer-to-peer col-
laboration can be initiated between two peers with no access to an activity server and
activities are replicated on the local peers. This has yielded a higher responsiveness in
real-time collaboration and has created support for disconnected work.

In the ABC-framework collaboration is modeled as a number of activities referenc-
ing a number of services. The activities represent work tasks and the services represents
applications used in the work tasks. To enable ad-hoc collaboration, we used the exist-
ing model, but turned the local representation of an activity into a distributed object
containing several distributed slots. The same was done with the local representation of
a service. This instantly gave us the communication and synchronization between the
different participating peers for free.

130 J.E. Bardram and M. Mogensen

The effort of extending the ABC framework to support ad-hoc collaboration was lim-
ited, counting days rather than weeks or months. Moreover, it showed that the PDSO
concepts and the supporting infrastructure are well suited to support the creation of
more complex distributed application tasks that just a simple game. The technology is
now part of the ABC framework and we are currently creating support for activity-based
computing in a hospital setting, by integrating to a Picture, Archiving, and Communi-
cation System (PACS) and an Electronic Health Record (EHR). The plan is to deploy
the ABC Framework including the distributed shared objects in a hospital. The support
for ad-hoc collaboration implemented using the distributed shared objects will enable
clinicians to initiate a real-time collaborative session between a surgeon in the operating
room and an expert located elsewhere in the hospital.

5 Conclusions

One of the key features of the peer-to-peer distributed shared objects presented in this
paper is their support for ad hoc object sharing in loosely coupled networks. The peer-
to-peer – or object-to-object – discovery and synchronization makes it simple to create,
lookup, and join the distributed objects with their shared data. You can simply look
up the object, join it, get a replica, and start to use it as another local object. This
indeed makes distributed programming simple while maintaining awareness about the
distributed nature of the application.

Furthermore, to support distribution in a pervasive computing environment, the
PDSO infrastructure supports intermitted network connections. A peer continues to
work while disconnecting and may re-join the network and the PDSOs set of objects
later. This applies equally well for smaller network interruptions and for disconnected
use. In the former case the user would most likely not even notice the small glitch since
all distributed objects are available locally. In the latter case, the user is able to continue
working on his local object model and upon reconnect he can re-join the shared network
model potentially being involved in some conflict resolution.

The notion of distributed shared objects have been receiving increasing attention
because this approach addresses some of the core challenges in existing RPC-based re-
mote method invocation schemes, and it holds the potential to ensure large-scale distri-
bution while ensuring local responsiveness in applications. This paper have suggested
one approach to create infrastructure support for such distributed shared objects and
should hence be seen as one contribution in this line of research. In our future work we
plan to improve on the infrastructure, especially focusing on making support beyond
a local area network, and to continue making pervasive computing applications using
these distributed shared objects in C#. The latter would also include creating support
for e.g. the Pocket PC platform in the .NET compact framework.

Acknowledgments

Jonathan Bunde-Pedersen provided valuable feedback on the ideas and language sup-
port presented in this paper. This work is partly funded by the Competence Centre ISIS
Katrinebjerg. The ABC project is funded by the Danish Research Council under the
NABIIT program.

DOLCLAN – Middleware Support for Peer-to-Peer Distributed Shared Objects 131

References

1. Bakker, A., van Steen, M., Tanenbaum, A.S.: From remote objects to physically distributed
objects. In: FTDCS ’99: Proceedings of the 7th IEEE Workshop on Future Trends of Distrib-
uted Computing Systems, p. 47. IEEE Computer Society, Washington, DC (1999)

2. Bal, H.E., Bhoedjang, R., Hofman, R., Jacobs, C., Langendoen, K., Ruhl, T., Kaashoek, M.F.:
Performance evaluation of the orca shared-object system. ACM Trans. Comput. Syst. 16(1),
1–40 (1998)

3. Bal, H.E., Kaashoek, M.F., Tanenbaum, A.S.: Orca: A language for parallel programming of
distributed systems. IEEE Trans. Softw. Eng. 18(3), 190–205 (1992)

4. Bal, H.E., Tanenbaum, A.S.: Distributed programming with shared data. In: IEEE CS
1988 International Conference on Computer Languages, pp. 82–91. IEEE Press, Piscataway
(1988)

5. Bardram, J.E., Bunde-Pedersen, J., Mogensen, M.: Differentiating between Accountable and
Ephemeral Events in the ABC Hybrid Architecture for Activity-Based Collaboration. In:
Proceedings of the IEEE International Conference on Collaborative Computing (Collabo-
rateCom 2005), pp. 168–176. IEEE Press, Orlando, Florida (2005)

6. Bardram, J.E., Bunde-Pedersen, J., Soegaard, M.: Support for activity-based computing in a
personal computing operating system. In: CHI ’06: Proceedings of the SIGCHI conference
on Human factors in computing systems (To appear), ACM Press, New York (2006)

7. Beaudouin-Lafon, M., (ed.): Computer Supported Cooperative Work. John Wiley and Sons,
New York (1999)

8. Birrell, A.D., Nelson, B.J.: Implementing remote procedure calls. ACM Trans. Comput.
Syst. 2(1), 39–59 (1984)

9. Cugola, G., Picco, G.: Peerware: Core middleware support for peer-to-peer and mobile sys-
tems (2001)

10. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang. Syst. 7(1),
80–112 (1985)

11. Geyer, W., Vogel, J., Cheng, L.-T., Muller, M.: Supporting activity-centric collaboration
through peer-to-peer shared objects. In: GROUP ’03: Proceedings of the 2003 interna-
tional ACM SIGGROUP conference on Supporting group work, pp. 115–124. ACM Press,
New York (2003)

12. Greenberg, S., Roseman, M.: Groupware toolkits for synchronous work. In: Beaudouin-
Lafon [7], pp. 135–168

13. Hagimont, D., Boyer, F.: A configurable rmi mechanism for sharing distributed java objects.
IEEE Internet Computing 5(1), 36–43 (2001)

14. Hill, J., Gutwin, C.: The MAUI Toolkit: Groupware Widgets for Group Awareness. Computer
Supported Cooperative Work 13(2), 539–571 (2004)

15. Homburg, P., van Steen, M., Tanenbaum, A.S.: An architecture for a wide area distributed
system. In: EW 7: Proceedings of the 7th workshop on ACM SIGOPS European workshop,
pp. 75–82. ACM Press, New York (1996)

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

17. Lipkind, I., Pechtchanski, I., Karamcheti, V.: Object views: language support for intelligent
object caching in parallel and distributed computations. In: OOPSLA ’99. Proceedings of the
14th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pp. 447–460. ACM Press, New York (1999)

18. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous procedure calls
in distributed systems. In: PLDI ’88. Proceedings of the ACM SIGPLAN 1988 conference
on Programming Language design and Implementation, pp. 260–267. ACM Press, New York
(1988)

132 J.E. Bardram and M. Mogensen

19. Matsuoka, S., Kawai, S.: Using tuple space communication in distributed object-oriented
languages. In: OOPSLA ’88. Conference proceedings on Object-oriented programming sys-
tems, languages and applications, pp. 276–284. ACM Press, New York (1988)

20. Mogensen, M.: Distributed objects in loose coupled local area networks. Technical Report,
Computer Science Department, University of Aarhus (2005)

21. Oki, B., Pfluegl, M., Siegel, A., Skeen, D.: The information bus: an architecture for exten-
sible distributed systems. In: SOSP ’93. Proceedings of the fourteenth ACM symposium on
Operating systems principles, pp. 58–68. ACM Press, New York (1993)

22. OMG. Corba services: Common object services specification, chapter 4: Event service
(March 2001)

23. Picco, G.P., Murphy, A.L., Roman, G.-C.: LIME: Linda meets mobility. In: International
Conference on Software Engineering, pp. 368–377 (1999)

24. Prakash, A.: Group editors. In: Beaudouin-Lafon [7], pp. 103–134
25. Roseman, M., Greenberg, S.: Building real-time groupware with groupkit, a groupware

toolkit. ACM Trans. Comput.-Hum. Interact. 3(1), 66–106 (1996)
26. Shim, H.S., Hall, R.W., Prakash, A., Jahanian, F.: Providing Flexible Services for Manag-

ing Shared State in Collaborative Systems. In: Rodden, T., Hughes, J., Schmidtk, K. (eds.)
Proceedings of the Fifth European Conference on Computer Supported Cooperative Work,
Lancaster, UK, pp. 237–252. Kluwer Academic Publishers, Boston (1997)

27. Smith, D.A., Kay, A., Raab, A., Reed, D.P.: Croquet - a collaboration system architecture. In:
C5 2003. Proceedings. First Conference on Creating, Connecting and Collaborating Through
Computing, pp. 2–9. IEEE Press, New York (2003)

28. Speakman, T., Crowcroft, J., Gemmell, J., Farinacci, D., Lin, S., Leshchiner, D., Luby, M.,
Montgomery, T., Rizzo, L., Tweedly, A., Bhaskar, N., Edmonstone, R., Sumanasekera, R.,
Vicisano, L.: PGM Reliable Transport Protocol Specification. RFC 3208 (Experimental)
(December 2001)

29. Vogel, J., Geyer, W., Cheng, L.-T., Muller, M.J.: Consistency control for synchronous and
asynchronous collaboration based on shared objects and activities. Computer Supported Co-
operative Work 13(5-6), 573–602 (2004)

30. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent programming abcl/1.
In: OOPLSA ’86. Conference proceedings on Object-oriented programming systems, lan-
guages and applications, pp. 258–268. ACM Press, New York (1986)

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 133 – 138, 2007.
© IFIP International Federation for Information Processing 2007

Peer-to-Peer Based QoS Registry Architecture for Web
Services*

Fei Li, Fangchun Yang, Kai Shuang, and Sen Su

State Key Lab. of Networking and Switching, Beijing University of Posts and
Telecommunications

187#,10 Xi Tu Cheng Rd.,Beijing,100876, P.R.China
pathos.lf@gmail.com, {fcyang, shuangk, susen}@bupt.edu.cn

Abstract. Web service QoS (Quality of Service) is a key factor for users to
evaluate and select services. Traditionally, run-time QoS of web services stores
in centralized QoS registry, which may have performance and availability
problems. In this paper, we propose a P2P (Peer-to-Peer) QoS registry
architecture for web services, named Q-Peer. Q-Peer is an unstructured P2P
system. Query of QoS is naturally achieved by getting QoS address from
corresponding service description. Q-Peer has a replication based mechanism to
ensure load-balance of the whole architecture. The architecture takes advantage
of P2P systems to ensure its availability, performance and autonomy. We are
currently implementing Q-Peer and planning to test it on Planet-Lab.

1 Introduction

Using web service technology to integrate business applications is one of the major
trends of distributed computing. It is a widely known procedure that service1
requesters discover services by functional description and select services by non-
functional properties. Because service function is relatively stable throughout service
lifetime, while service QoS can change frequently with time, load, network condition
and many other factors, maintaining the two types of information has different system
requirements and design considerations. Thus, the 2 steps are often accomplished on 2
entities respectively, called service registry and QoS registry. Centralized QoS
registry has been proposed and researched before [1][2], but they are sharing some
common shortcomings of centralized systems, like scalability, performance and single
point failure. More importantly, because of business boundary, system scale and other
limitations, centralized system may not be able to support global scale B2B
interoperations. As far as we know, only Gibelin. and Makpangou [3] have considered

* This work is supported by the National Basic Researchand Development Program (973

program) of China under Grant No.2003CB314806; the Program for New Century Excellent
Talents in University (No:NCET-05-0114); the Program for Changjiang Scholars and
Innovative Research Team in University (PCSIRT); the Hi-Tech Research and Development
Program (863 Program) of China under Grant No.2006AA01Z164.

1 In this paper, we use web service and service interchangeably.

134 F. Li et al.

distributed QoS registry architecture but no detailed design is presented and the hash-
table based QoS indexing approach is inefficient.

In past several years, peer-to-peer paradigm has gained considerable momentum as
a new model of distributed computing. P2P system is created for file sharing at first,
like Napster, Gnutella[4], Kazaa[5] and so on. For their scalability, autonomy and
robustness, they are introduced into distributed storage and information retrieving[6].
Some applications of P2P have already contributed to web service research, as
distributed service discovery[7].

In this paper, we propose our ongoing work--P2P QoS registry architecture, named
Q-Peer. Q-Peer is a service QoS information storage architecture. It provides large
scale QoS collecting, retrieving and monitoring services. It can work with centralized
or decentralized service registry like UDDI or other P2P service discovery system.
Q-Peer solving the QoS query problem by adding QoS address information into
service registry, so that it does not need a query routing mechanism internally. QoS
information of similar or identical services is clustered together. This makes the
retrieving and comparison of service QoS very efficient. An autonomous replication
mechanism is applied on all peers to adjust load and improve availability.

The rest part of this paper is organized as follows: Section 2 introduces the general
model and design consideration of Q-Peer. Section 3 presents how to disseminate
QoS and load information in Q-Peer. Section 4 proposes the load balancing approach
in Q-Peer. The paper concluded in Section 5 with our future work.

2 System Model

Q-Peer is a peer-to-peer database system for storing QoS information of web services.
QoS data is stored in XML documents. Common P2P database has a general
requirement that system has to provide an efficient mechanism to query and locate
objects, while this requirement can simply be satisfied in Q-Peer by utilizing service
registration information. Because no service user cares about service quality without
known its function, to query certain QoS metrics without service description is
meaningless. Thus, Q-Peer is not an independent P2P database----it has to work with
certain service registry system. We organize QoS storage by service description, so
that QoS items can simply be located when querying service description. For every
service, service registry stores its description and a QoS address list (for replicas).
Users retrieve QoS by directly access one of the addresses. In fact, the query
mechanism in Q-Peer is similar to the most original P2P system—Napster, by a
centralized index server cluster.

QoS can be divided to several classes because same or similar services have same
QoS metrics[10]. Functional identical services’ quality information is stored at one
peer at first, but they could be replicated as a whole when needed. Storing a class of
QoS together can improve efficiency because users often retrieve QoS of same
service’s different implementation to compare and select from them. Different service
selection algorithm can be deployed on peers to assist users[1][8]. If a service stores its
QoS information at a certain peer, the peer acts as its run-time monitor. Peer updates
service QoS periodically. The update process can include certain authentication and
evaluation mechanism so that services can not submit fake QoS to Q-Peer.

 Peer-to-Peer Based QoS Registry Architecture for Web Services 135

We do not use super-peer based architecture because super-peer intends to improve
query efficiency, which is not a problem in our system. All peers are equal in Q-Peer.
Peers employ a replication based load sharing policy which utilizing spare resource
on light loaded peers. Every QoS classes can have several replicas on different peers.
Service registry has a list of candidate peers for every service and chooses a random
one when user request to retrieve QoS. The random peer choosing approach can be
substituted with other more sophisticated approach. Every peer has load information
about its neighbors for load-balance and backing up each other. The detailed
mechanisms will be presented in the following section.

Service Registry

P1 P2

P4P3

Q(S5)
Q(S7)

Q(S6)

Q(S4)

Q(S3)Q(S2)

Q(S8)

Q(S1)

S5 S7S6 S8

S1 S2 S3 S4
Service

Requester
1.QoS Request

2.QoS Address

4.QoS

3.Get QoS

Fig. 1. General model of Q-Peer

Fig.1 illustrates a sample Q-Peer system containing 4 peers and 8 classes of
services. Replicas are hided for illustrating our model clearly. Service registry in the
figure can be either centralized or decentralized architectures. iS is a service set
which contains a number of same or similar service description. The QoS of a service
set iS is ()iQ S . Each peer stores several sets of ()iQ S . Every service description
contains the address of its QoS, like a pointer. When a service requester needs to
query QoS of a certain service, it sends a QoS request to service registry, then the
registry will reply with a QoS address. Service requester can get QoS by direct
accessing the address.

3 Information Dissemination

In Q-Peer, two types of information change frequently which should be constantly
updated and properly disseminated in the system. The first is service QoS. The second
is load status of peers.

136 F. Li et al.

3.1 QoS Update

For a newly registered service s, which belongs to service class S, it has 2 parts of
information to be registered, service description D(s) and QoS of the service Q(s). If
no service of S has been registered before, service registry will choose a random peer
to store its QoS information. If S has been registered, QoS of the service Q(s) is added
to the peers storing QoS of the class Q(S). As soon as a peer is informed that it will
store a new service’s QoS, it contact with the service and get current QoS for the first
time.

We have mentioned that for sharing load and improving availability, any Q(S) may
have several replicas (the replication mechanism is presented in next section). One of
the storage peers for a QoS class is the main peer, the others are replication peers.
Every time service update its QoS, it update to the main peer first. Then the other
replicas are passively updated by the main peer.

3.2 Load Update

In Q-Peer, peer’s load and capacity are characterized by the frequency of accessing
QoS on a peer. We assume every peer has infinite storage space for cost of increasing
storage is much lower than increasing CPU power or network bandwidth. QoS
accessing comes from 2 major operations: one is updating of QoS; another is query of
QoS. For a peer P storing n classes of QoS: () () (){ }1 2, ,..., nQ S Q S Q S , each
class has an updating frequency u

if and a query frequency q
if , the load of the peer is:

()
1

()
n

u q
i i

i

L P f f
=

= +∑ (1)

A peer P has a maxim capacity ()MC P equals to the estimated maxim allowed

accessing frequency ()Mf P . The available capacity to accept new service

is: () () ()A MC P C P L P= − .

Every peer has a list of other peers’ address, called Neighbor List (NL). The
neighbor list contains a limited small number of peers which can accept a peer’s load

sharing request. This list is sorted by AC in descent order. A neighbor item in NL

is () (), , 1... , ,0A
i i iN P C P i m a m b a b= = ≤ ≤ < < , where m is the total

neighbor number, a and b are the lower and upper limit of m. Items in NL can be
dynamically added and deleted according to peer status. When a new peer P adds to

Q-Peer system, it will get a random NL. P periodically sends its own ()AC P to peers

in NL and gets their AC back from reply messages to update its NL. For any peer

received an unknown peer’s AC , if it is better than the last item in their NL, the new
peer is inserted. If NL exceeds the maxim number limit b, the last item will be
removed. Peers have a lowest capacity limitation l to take a peer as their neighbor. For

any iN which ()A
iC P l< , it will be deleted. If item number in NL is lower than the

 Peer-to-Peer Based QoS Registry Architecture for Web Services 137

minimum number limit, peer will initiate a random walk process to find new satisfied
peers. The random walk begins from a random peer in its NL, message containing its

own AC for other peers to update NL if satisfied. For any peer walked through, it

sends its AC back to the initiating peer. The random walk will stop for TTL limitation.
By this load updating approach, peers tend to exchange information with light loaded

peers, which is more likely to be able to accept replication requests. For peers having
less spare capacity which have not been taken as neighbor of any other peers, they still
have chance to use other peers’ resource. When they have spare capacity again, they
will be added to its neighbor’s NL. We have to tune parameters in a more practical
environment to limit the message overhead in Q-Peer and improve load sharing.

4 Replication and Load Sharing

If a peer found itself in heavy load, it can ask other peers to replicate some of its
service class to share its load. We prefer to replicate service classes as a whole rather
than replicate some single service. Because our aim of replication is simply to balance
load, to replicate single service could not contribute much to load sharing. And to
replicate a part of a QoS class will affect the extended functions like service selection.
Thus, a class of QoS is the operation unit of replication.

Every QoS class has ()2r r K≤ ≤ replicas including the original one, where K is

the maxim allowed replica number. To improve availability, the first replica is created
immediately after the QoS class is created, so any QoS class has at least 2 replicas. If
a peer’s load is approaching threshold, it sends replicating request to the neighbor
which has the most spared capacity. Peer always tries to replicate the most popular

QoS class ()iQ S . If the spared capacity of the first neighbor can satisfy replication

requirement and the class has less than K replicas, the first neighbor will be taken as
the replication peer. The replication condition is:

()1 1

q
A u i

i

r f
C P f

r

×> +
+

 and r K< (2)

In (2), we can find that by replicating a QoS class, replication peer can share

1r r + of the class’ query load, but updating load can not be leveraged because all

replicas should keep consistency. With the growing of replica number, load sharing

by replication can have less and less effect because 1r r + is approaching 1. What’s

more, keeping more replicas consistent adds more load on the network. Thus the K
should be a small number to make the approach effective.

If the spared capacity of first neighbor ()1
AC P could not satisfy the replication

requirements, the random walk process in previous section will be initiated to rebuild

the neighbor list. As soon as a replication peer is found, a replica of ()iQ S is

transferred to new peer. Service registry is then informed that a new replica can be
selected to retrieve QoS.

138 F. Li et al.

If all QoS class in a peer has had K replicas and it is still under load pressure, a
random QoS class will be chosen to be deleted. Before deletion, service registry is
informed so that it will not retrieve the class of QoS from this peer. Main peer of the
QoS class is also informed so that it will not update QoS to this peer. If the deleted
replica is the main replica of the service class, another replica will be chosen as main
replica and related service providers will be informed to update QoS to the new one.

5 Conclusion and Future Works

In this paper, we presented a distributed web service QoS registry—the Q-Peer
architecture. The architecture is based on Napster-like unstructured peer-to-peer model.
Every QoS item’s address is stored in service registry with its service description.
Same or similar services’ QoS is clustered together to conveniently expand other QoS
operation like service selection. Every QoS class has several replicas to improve
performance and availability. Replication is based on load status of peers. There is a
simple but effective mechanism to exchange load information between peers. Q-Peer
architecture is expected to support efficient QoS storage with excellent scalability. It
can be used as a QoS infrastructure for global B2B applications.

The design of Q-Peer has just finished and we are currently implementing it. Many
detailed design considerations should be tested and adjusted in practical environment.
Our future works may include: to design a peer load based replica selection
mechanism to help balance load further; to find out a replica deletion algorithm,
which will less affect the whole system; to analyze and adjust parameters with
experimental results. We will deploy and test Q-Peer on Planet-Lab[9] in near future.

References

1. Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation and policing in dynamic web service
selection. In: Proceedings of the 13th International Conference on World Wide Web,
pp. 66–73. ACM Press, New York (2004)

2. Yu, T., Lin, K.J.: A Broker-based Framework for QoS-Aware Web Service Composition.
In: Proceeding of IEEE International Conference on e-Technology, e- Commerce and
e-Service (EEE-05), Hong Kong, China (March 2005)

3. Gibelin, N., Makpangou, M.: Efficient and Transparent Web-Services Selection. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 527–532.
Springer, Heidelberg (2005)

4. Gnutella Homepage http://www.gnutella.com
5. KaZaA Homepage, http://www.kazaa.com
6. Koloniari, G., Pitoura, E.: Peer-to-peer management of XML data : issues and research

challenges. ACM SIGMOD Record, vol. 34(2) (June 2005)
7. Schmidt, C., Parashar, M.: A peer-to-peer approach to Web service discovery. In:

Proceedings of the 13th International Conference on World Wide Web, pp. 211–229(2004)
8. Li, F. Su, S., Yang, F.C.: On Distributed Service Selection for QoS Driven Service

Composition. In: Proceedings of the 7th International Conference on Electronic Commerce
and Web Technologies, EC-Web’06, LNCS, vol. 4082 (2006)

9. Planet-Lab Homepage http://www.planet-lab.org/
10. Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web Services

Selection. IEEE Internet Computing 8(5), 84–93 (September 2004)

Migration in CORBA Component Model

Jacek Ca�la

AGH — University of Science and Technology
Department of Computer Science

jcala@agh.edu.pl

Abstract. Migration of running application code is considered a very
attractive and desired mechanism to improve application performance,
resource sharing, self-adaptability, etc. This mechanism seems to be even
more important nowadays, considering the growing interest in the area
of mobile computing and mobile networks.

This paper briefly presents a migration mechanism for a CORBA
Component Model platform. We discuss general issues related to mi-
gration of running code, further elaborated in the context of CCM. We
also propose an extension to the original CCM model which provides
interfaces to implement migration.

The paper presents the most important problems which appeared dur-
ing implementation of a prototype facility and it discusses possible solu-
tions. One of the most fundamental issues related to mobility of running
code is the residual dependency problem. The intention of the work is
not to provide a solution to this (possibly unsolvable) problem, but to
propose an approach which would make programmers aware of its exis-
tence. Thus, the paper allows readers to make more conscious decisions
when designing their components. The paper ends with an evaluation of
the prototype implementation on top of OpenCCM, an open source Java
implementation of the CORBA Component Model.

1 Introduction

Migration of processes, tasks, objects, components or even whole operating sys-
tems during runtime is considered a very attractive and desired mechanism.
Since the 1980s, there has been substantial interest in migration but, unfortu-
nately, with very little use in real-world applications [1,2]. Today, however, as
systems become more and more distributed in nature and with increasing interest
in Component and Service Oriented Architectures (COA and SOA), migration
mechanisms are more attractive than ever, since they enable better process-
ing power exploitation, resource sharing, fault avoidance, mobile computing and
self-adaptability.

Migration as a mechanism to facilitate dynamic load distribution may increase
exploitation of available processing power by shifting a task from an overloaded
node to another node, with sufficient CPU resources. It may also substantially
reduce costs associated with frequent remote communication, improving effec-
tiveness of a distributed system. Instead of calling remote objects, it is often

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 139–152, 2007.
c© IFIP International Federation for Information Processing 2007

140 J. Ca�la

more efficient to move one of the communicating sides directly to the other. The
same strategy may be used to facilitate better resource sharing. If there is a
node with a large amount of memory or specialized hardware devices, it might
be useful to move a software component to this node in order to fully leverage
its resources.

Moving instances of running code may also positively influence fault tolerance
as well as system maintenance aspects. Given a migration facility, system admin-
istrators can move a running application to another node to perform maintenance
tasks on the original host machine. Moreover, in more autonomous systems one
can imagine that migration would be triggered by a fault detection mechanism
whenever there is a suspicion of hardware failure.

Migration may also greatly support system self-adaptability, enabling reaction
to changes in the environment e.g. appearance of a new mobile node. In addi-
tion, it may support deployment of an application according to changes in the
environment. This aspect — support for dynamic and adaptive deployment of
component-based applications in heterogeneous hardware and software domains
— was the primary motivation behind the provision of a migration mechanism
for a platform implementing the CORBA Component Model. The presented pa-
per, however, does not focus on the deployment process itself but rather on issues
directly related to the design and implementation of a CCM movement facility.

The paper is organized as follows. The following section covers work related
to migration mechanisms, not limited to component architectures but more gen-
eral in scope. Section 3 briefly introduces the fundamentals of migration mech-
anisms with relation to component environments. The next section presents the
proposed extensions to the CORBA Component Model in order to facilitate mi-
gration. Section 5 depicts the internals of the adopted approach and presents
solutions to the most important issues. In Section 6 we present evaluation tests
of the prototype implementation. The work ends with conclusions and future
development directions.

2 Related Work

The problem of migration of application code has already been addressed by
many previous research projects and works such as [1], which gives a compre-
hensive report of achievements in this area.

More recent work related to runtime migration of entire operating systems is
presented in [2]. The most important advantages of this approach are: reduction
of migration time to only several dozen milliseconds, and limiting the problem of
residual dependencies between source and destination locations.1 However, the
important requirement is common network-attached storage (e.g. NFS) between
the source and destination nodes which have to be parts of the same LAN.
Moreover, the problem of residual dependencies remains a burden even when
1 The residual dependencies problem involves the level of dependency of a migrating

entity on the source host. It is the main factor which restrains broad use of migration
mechanisms as it substantially reduces fault tolerance of the system.

Migration in CORBA Component Model 141

local devices are considered e.g. when the target node does not provide a given
device, present at the source.

Another approach to migration was undertaken at the level of OS processes.
Significant research was performed in this area, resulting in several OS solutions,
such as Sprite [3], Amoeba [4], RHODOS [5] and many others; however, only a
few of them are used today [6]. Process migration is not available in modern,
popular operating systems such as MS Windows, Linux and UNIXes. This is
mainly due to the complexity of the mechanism and undesirable effects of state
dispersal which directly result from the problem of residual dependencies.2

Yet another level where a migration facility may be introduced is the mobility
of objects. Some languages and environments have been created with migration
procedures in mind – e.g. Emerald [7] and COOL [8] but it is a far too complex
a mechanism to be concealed underneath high-level language notation. Hence,
more recent platforms such as CORBA, Java and .NET effectively implement
migration [9] but the mechanism itself is not embedded in them.

The presented paper describes an approach to providing migration of CORBA
Components which, in the context of growing interest in COA, may be considered
interesting. Through balanced granularity — a component is ”larger” than an
object and usually ”smaller” than a process — movement of components remains
a flexible and efficient mechanism and may well support adaptation of application
performance, which was the primary motivation behind the presented solution.
The proposed extension of the CCM model ensures weak mobility (as defined
in [10]) which is in contrast to strong mobility. The former is migration of “a
code accompanied by some initialization data” — in this case the code and the
state of a component, whereas the latter provides migration of the code and
execution state which is generally more flexible but hardly possible to provide
at middleware level.

In [10] there is presented a portable serialization mechanism which allows stor-
ing the state of a CORBA object and exchange it between different language do-
mains. The mechanism described in this paper do not provide portability across
languages, however offers a solution for migrating code of a component during
its runtime with respect to the operations invoked on and by the component.

3 Migration Mechanism

Throughout this work the notion of migration is defined according to [11] as
follows:

object migration refers to the ability to move an object from one ad-
dress space to another (change its physical location) without breaking
references to that object currently held by clients.

This definition comes from a paper related to the CORBA platform, but the
object mentioned above should not be perceived in OO categories. The notion
2 Due to residual dependencies, multiple migration of entities results in the functioning

of those entities being dependent on more and more systems.

142 J. Ca�la

may well refer to any code running in an environment, which is able to change
its location. It is important to note that the presented definition, by stressing
preservation of references between a migrating entity and its surroundings, forces
the migration mechanism to ensure that following migration, communication
with the entity shall progress as before.

The CORBA environment is well suited to resolving issues related to migra-
tion of objects. Mechanisms such as Request Processing Policy, ServantLocators,
Servant Retention Policy, ForwardRequest exception, etc. may well be used to
support a migration facility. As shown later in this paper, all of them are also
used to provide migration of components, hence in order to clarify how to move a
component from one place to another, it is important to analyze how, in general,
movement of objects may be performed.

There are several stages which a running object has to go through when
migrating from one place to another:

1. Suspending the state of the object which is required to store its state
consistently. The main issue here is that following suspending the CORBA
platform still has to deal with incoming, ongoing and outgoing requests.
Section 5.1 presents these problems in more detail.

2. Storing the state of the suspended object, alone or together with code.
Which action is to be performed depends on the availability of the code at
the destination. It is also crucial to answer the question of what state the
object is in. If an object is connected with others, we must know whether
they need to be copied as well or perhaps accessed remotely (shallow/deep
copy problem). To make things even more complicated, storing state may
also take into account heterogeneity of the environment and prepare a copy in
an easily transferable format. Some of the issues mentioned here are covered
in [12,13,14].

3. Moving the state between the source and target locations. This step is quite
straightforward but in case of problems with transferring data, it should be
possible to roll back the whole process and return the system to the state
just before the suspension. Migration requires the target location to be ready
to accept incoming objects, hence an appropriate infrastructure must be
prepared at the destination.

4. Loading the state of the object at the destination. This step requires the
code of the moved object to be available at the destination. In the case of
heterogeneous environments, such as CORBA, this requirement is sometimes
hard to fulfill — e.g. movement of a Java implementation of an object to an
ORB for C++ language. Loading is much easier if we can assume platform
homogeneity, such as that offered by Java or .Net environments.

5. Reconnecting of the moved entity in such a way that every other object (or,
more generally, client) communicating with the migrating object should not
see any change in behavior. There are three possible techniques of referencing
a moved object: (1) deep update, (2) chain of reference, or (3) use of a home
location agent. More details about this issue are presented in Sect. 5.3.

Migration in CORBA Component Model 143

6. Activating the object at the new location followed by destroying it at the
previous location. This is the final step which ends the whole process of
migration and results in a fully functional system.

A crucial issue when considering migration is to shorten the time required to
proceed through all the above stages, guaranteeing a more responsive and reliable
mechanism. An important fact is that after suspension and before activation the
object must not respond to any requests which can change its state. Otherwise,
the stored state of the object would not match the actual state altered by the
invocations and this would lead directly to loss of information.

4 Mobility with CORBA Component Model

The CORBA Component Model [15] defines an approach to designing, imple-
menting and assembling component applications in the CORBA environment.
By means of a new, extended version of IDL, it provides designers with an easy
yet powerful way to define a component. Components may be equipped with sev-
eral kinds of ports by which they are connected with other components or their
execution environment. The model also introduces a new language, the Compo-
nent Implementation Definition Language (CIDL), to describe implementation
details of a component e.g. its lifecycle, persistence details, etc.

The CORBA Component Model does not in itself provide any mechanism
which facilitates migration transparency i.e. movement of components between
different locations. It is the goal of the presented work to describe steps which
were taken to extend the CCM model and verify the extension on one of the
available CCM implementations, namely OpenCCM [16].

A component in CCM may be perceived as having two sides:

– external side — visible to clients, defined by means of the IDL3 language
which allows creating component definitions with attributes, ports and in-
heritance details. The basis for this part is the CCMObject interface,

– internal side — visible to a container, defined by means of the CIDL lan-
guage. The basis for this part of a component is the EnterpriseComponent
interface implemented by component executors.

The presented solution extends both sides of the component definition, allow-
ing easy control of the migration mechanisms by an external entity. A prototype,
called the Component Migration Service (CMS), has been developed for the pur-
pose of evaluating the approach. This prototype is presented in Sect. 6.

4.1 External Interface

As mentioned earlier, migration consists of several stages: suspending, storing,
moving, loading, reconnecting, and activating. In order to control movement of a
component by an external entity it is necessary to extend the existing CCMObject
interface with suitable operations. As shown in listing below, most of the steps
described above have their counterparts in the proposed extension.

144 J. Ca�la

IDL definition of CCMRefugee interface, an extension to the original CCMObject
interface

interface CCMRefugee : ::Components::CCMObject
{

void refugee_passivate();

void refugee_activate();

void refugee_store(out Criteria the_criteria);

void refugee_load(in Criteria the_criteria)
raises(InvalidCriteria);

void refugee_remove()
raises(::Components::RemoveFailure);

};

The meaning of the operations is consistent with the descriptions given in
the previous section. The only two missing operations are move and reconnect
which are included at the factory level (i.e. CCMHome). This decision is imposed
by the fact that in order to move or reconnect a component it is necessary to
destroy and create its instances, which is the primary goal of a factory.

4.2 Factory Involvement in Component Migration

In order to move a component to a new location, the destination must be pre-
pared to accept the component. The presented solution does not introduce any
special entities which carry out creation of a migrant at the destination. The
CCM model provides a standard factory interface for every component, namely
CCMHome, which may be simply extended to fulfill the requirements associated
with accepting migrants. As shown in the following listing the CCMRefuge inter-
face has four operations supporting movement of components.

Extensions to the factory interface are twofold:

– required at source location: refugee freeze, refugee moved and refugee
unfreeze operations. The aim of the first is to prepare a component and
the infrastructure for movement. The second is responsible for reconnection
of the moved component at the source location. The last extension is to be
called in case of movement failure, when there is a need to reverse passi-
vation of a component and return the system to the state from just before
suspension,

– required at destination location: refugee accept is invoked to ask the target
to accept a migrating component. The operation returns a newly created
incarnation of the component, used further by CMS to reconnect references.
In case of problems, the operation throws an InvalidCriteria exception to
signal the CMS to roll back the whole migration attempt.

Migration in CORBA Component Model 145

IDL definition of CCMRefuge interface, an extension to CCMHome interface

interface CCMRefuge : ::Components::CCMHome
{

Criteria refugee_freeze(in CCMRefugee refugee_here)
raises (::Components::CCMException);

CCMRefugee refugee_accept(in Criteria refugee_state)
raises (InvalidCriteria);

void refugee_moved(
in CCMRefugee refugee_here, in CCMRefugee refugee_there);

void refugee_unfreeze(in CCMRefugee refugee_here)
raises (::Components::CCMException);

};

The presented enhancements are used by CMS as depicted in Fig. 1. From
the point of view of CMS, migration consists of three basic stages: (1) freezing
the state of the component, (2) moving the component to the target location,
and (3) reconnecting the component at the target location.

At any stage following passivation of a component, a failure may occur. In
such a case migration shall be immediately abandoned and the system shall be
restored to its original state as fast as possible. Then, instead of reconnecting
by means of refugee moved it is necessary to invoke the refugee unfreeze
operation which reactivates the component at the source location.

4.3 Extended Component Lifecycle

Apart from the extensions which enable migration control, some enhancements
are required at the internal side of the component, namely its executors. They
provide a way to inform the programmer about component state changes.

The operations included in RefugeeComponent, which is a basis for executors
of movable components, reflect directly operations published in CCMRefugee.
This is because CCMRefugee delegates requests to the appropriate executor, im-
plementing the RefugeeComponent interface. Operations of this interface in-
dicate changes in components’ lifecycle and should be used by a component
developer to control resource usage, progress in communication, internal state
of the component, etc. For this reason it seems worthwhile to describe the exact
meaning and proposed use of each operation:

– ccm refugee passivate — is called just before passivation of the compo-
nent. The developer shall use this indicator to prepare the component for the
storing phase, i.e. the component should interrupt any activities which may
change its state during migration. As discussed later in Sect. 5.1, the range
of activities which the developer should perform during this call depends on
the way the component is implemented,

146 J. Ca�la

the_cms : ::CMS Here : ::CCMRefuge CompHere : ::CCMRefugee There : ::CCMRefuge CompThere : ::CCMRefugee

refugee_freeze()

refugee_passivate()

refugee_accept()

refugee_store()

create()

refugee_load()

refugee_activate()

refugee_moved()

refugee_remove()

FR
EE

ZI
N

G
M

O
VI

N
G

R
E

C
O

N
N

E
C

TI
N

G

Fig. 1. Sequence diagram of successful migration between locations labeled HERE and
THERE

– ccm refugee store — is called to store the state of the component. Al-
though some languages, such as Java and .Net, can serialize classes au-
tomatically by means of the reflection mechanism, in this work a manual
approach is adopted in order to preserve greater portability of the CORBA
environment,

Migration in CORBA Component Model 147

– ccm refugee load — is opposite to ccm refugee store and shall be used
by developers to restore the state of the component. Once this operation is
invoked, it is certain that the component is located on the destination host.

– ccm refugee activate — may be called in two cases. Firstly, following suc-
cessful migration the operation is called on the newly created component
at the target location to indicate that the component is going to be acti-
vated and has to be ready to resume work. Otherwise, when migration fails,
ccm refugee activate is called at the source location to indicate that the
component returns to its normal operation.

– ccm refugee remove — is called on the component at the source location
whenever the migration attempt is successful. The aim of this operation is
to indicate that the component should release all resources acquired during
its work at the source host.

5 Migration Internals

The interfaces presented above provide a convenient way to control migration
of components. However, in order to successfully move a component it is neces-
sary to consider some crucial issues such as processing of requests, reconnection
and resource usage. The last issue is particularly important as it imposes some
constraints on how resources can be used by a mobile component. The following
sections provide a brief discussion about these problems.

5.1 Dealing with Requests on Suspension

As far as migration is concerned, one of the major issues is dealing with requests
which an object is or should be involved in. This problem arises when the object
is going to be suspended in order to preserve the consistency of its state, but
it is still entangled in some operation. In general, three possible cases are rele-
vant here: (1) incoming requests invoked on the object during suspension state,
(2) outgoing requests invoked by the object before suspension, and (3) ongoing
requests invoked on the object before suspension.

The solution to the first case is to collect all incoming requests until the object
is again reactivated. In the case of successful migration, all these requests are
redirected to a new location using the CORBA ForwardRequest exception.

The second case is more troublesome. It is important for the passivation of
the object to be performed if all outgoing invocations are already dealt with.
Otherwise, the returning result could introduce some inconsistencies between the
stored and real state of the object. In order to deal with such cases automatically,
Container Portable Interceptors (COPI) are required. Unfortunately, the COPI
specification has only been adopted recently and it is yet not widely implemented
by CCM platforms. Without COPI there is no easy way to determine the number
of outgoing requests on the middleware level. In the proposed extension the
solution to this issue is left to developers who need to be aware of all outgoing
requests whenever the ccm passivate operation is called.

148 J. Ca�la

Container Portable Interceptors may also be a very convenient and elegant
way to deal with the third problem i.e. ongoing requests. In this case, however,
their functionality may be easily overtaken by a ServantLocator. Two oper-
ations of the servant manager — preinvoke and postinvoke — are used to
count the number of ongoing operations. The locator ensures that passivation
does not occur until all the operations are finished and, by collecting all incoming
requests, guards the object from being bothered. Unfortunately, such a simple
solution may sometimes impose substantial delays in suspending a component
and developers should take that into account.

An important fact is that the solutions proposed above do not protect the
component from all state consistency-related problems. For example, if the com-
ponent interacts with the environment by means other than CORBA, there is
no easy way to provide a general solution at the level of the CCM container.

5.2 Constraints on Resource Usage

As mentioned above, whenever a CCM component communicates with the en-
vironment by means other than CORBA it may create problems with state and
communication consistency. The very same problem occurs when dealing with
a local filesystem, local devices, threads running on a source host and all other
local resources which are not accessible in the address space of the destination
host.

Nevertheless, in order to give developers substantial freedom of using software
and hardware platforms for component hosting it is not desirable to limit access
to local resources or native communication technologies. Instead, the lifecycle
of a component has been extended, providing programmers with means to be
aware of oncoming migration. There are two important cases to be considered:
(1) departure from a source host, and (2) arrival at a destination host.

Successful departure is signaled by two operations: ccm refugee passivate,
and ccm refugee remove. Passivation means that a component should cease all
activities which might change its state. Obviously, this may have an important
impact on communication, thread usage and sometimes resource allocation. The
second operation indicates the moment to free all gained resources, destroy all
local allocations, etc. This operation means that the component has been ef-
fectively transferred to a new location and may be completely destroyed at the
source.

Signaling component arrival at a destination host is done with the use of the
ccm refugee activate operation which should have semantics similar to both
the configuration complete and ccm activate operations originally called
by a CCM platform when the component was instantiated.

5.3 Reconnection

Another very important problem related to migration is reconnection between
the migrated component and all other clients, objects and components which
it interacts with. As mentioned earlier, there are three possible techniques of

Migration in CORBA Component Model 149

resolving this issue: (1) deep update, (2) chain of reference, and (3) use of a
home location agent.

The first technique requires all clients of the component to update their ref-
erences following migration. This is very expensive approach and, in fact, not a
viable one in distributed environments such as CORBA, since the clients may
not yet exist when migration occurs [11]. The second technique assumes that af-
ter movement the component leaves a trace at the previous location which points
to its new incarnation. From the point of view of a client, this is much more con-
venient, however, each movement makes the chain longer and longer, eventually
introducing significant inefficiencies in communication and being more prone to
failures (vide residual dependencies).

The last approach seems to be the most appropriate for resolving the problem
of referencing. On the one hand, clients can refer to the moving component
through a persistent reference of its home location agent. On the other hand,
the home agent is the only entity that should be informed about location changes.
This guarantees that consecutive migrations of the component do not incur any
additional delays in request processing.

The use of the home location agent has its drawbacks. Firstly, it also in-
troduces the problem of residual dependencies, although to a far lesser extent
than the chain-of-reference method. Secondly, use of a separate home location
object introduces additional costs even when the movable object is managed
by the same object adapter as the home agent. To reduce this overhead a
ServantLocator extension is proposed, which, by maintaining an additional mi-
gratory table, becomes the home agent itself. The ServantLocator’s preinvoke
operation is responsible for searching through the migratory table and returning
a ForwardException if the received request is directed to a component which
has migrated away.

6 Evaluation of Efficiency

Despite all the potential advantages stemming from introduction of a migration
mechanism to the CCM platform, it is not surprising that its use incurs addi-
tional delays on processing requests which, in consequence, lowers the overall
throughput of an application. Irrespective of how efficiently migration is per-
formed, the source of the loss of efficiency is at least twofold.

Firstly, it is connected directly with the means by which requests are
processed. Clients which use a reference of a moved component have to sub-
mit requests twice: first to the home location to get the current reference of
the component, and then again, using the acquired reference, to the component
itself. This overhead is usually substantially reduced by an ORB which caches
references returned in the first step, ensuring that all consecutive requests are
sent directly to the new location. Nevertheless, for the first invocation following
migration the overhead still persists.

150 J. Ca�la

Fig. 2. Migration of a refugee in a testbed
used to evaluate overhead of the migration
mechanism

The other and more severe rea-
son for loss of efficiency is the time
required to move a component be-
tween two locations. In order to
perform migration, the component
is suspended for the duration re-
quired to transfer its state. Obvi-
ously, the longer this interval is, the
less requests the component is able
to process. That is the main reason
why optimization of this step is a
crucial part of providing a mecha-
nism which would offer acceptable
responsiveness of migrating compo-
nents.

Figure 2 presents the testbed used to evaluate this kind of overhead. There
were five Refuge locations placed in two hosts, A and B, connected with a 100
Mb/s LAN network. Location 0 hosted the Home Agent of a moving component
which migrated between locations 1–4.

The testbed was used to evaluate migration of different kinds of components.
Table 1 lists the duration required by migration between the locations in relation
to the complexity of the component.

Table 1. Time [ms] required to perform migration in relation to complexity of the
component

L1 → L2 L2 → L3 L3 → L4 L4 → L1
No ports, no data 109 142 183 147
One facet 125 157 194 160
One receptacle 108 143 188 151
Some data 114 145 186 151
Five facets 127 168 222 175

Basing on the data presented in the table, it is worth to point out two in-
teresting facts. First, moving a component with a facet or event sink consumes
more time than moving a component with only a receptacle or event source. This
is because facets and event sinks are CORBA objects and have to be stored to-
gether with the state of the migrant in order to reconnect it properly. Second,
as can be seen, migration between locations 3 and 4 yielded the worst results,
whereas movement between locations 1 and 2 proved fastest. The reason for this
is that, originally, the components were placed on host A at location 0, hence
local updates of the Home Agent from location 1 and 2 were faster than net-
work communication between locations 3 and 4 and the agent. Additionally, the
location of CMS, which was placed on host A, was also important. This, again,
resulted in better performance if migration involved locations 1 and 2.

Migration in CORBA Component Model 151

The results collected in the table convey important information. They provide
an order-of-magnitude assessment of the time consumed by component migra-
tion. The most important case is the one when a component does not have
any ports and data. It shows pure migration overhead while other results are
distorted by serialization and transfer of code over the network. The results
should also be taken into consideration to estimate the number of operations
per second which the moving component is able to perform reliably. However,
the exact performance of the component highly depends on many factors such
as the length of the ORB’s request queue and the implementation of lifecycle
operations described in Sect. 4.3.

7 Conclusions and Future Work

The presented work describes extension of the CORBA Component Model with
a migration facility. The adopted approach does not provide a fully transparent
solution which, due to the important problem of residual dependencies, seems to
be unattainable. Instead, we propose an extension of component lifecycle, pro-
viding programmers with an interface to deal with migration in a proper way.
This is consistent with the approach proposed by the original CCM model where
a component is notified about configuration completion, activation, removal, etc.
Moreover, making programmers aware of component mobility does not impose
substantial constraints on the range of resources and communication technolo-
gies used. The cost is that the programmer is responsible for manual preparation
of a component for a migration attempt. However, at the level of middleware,
it seems hard — if indeed possible — to automatically generate the whole re-
quired migration infrastructure for a component. The container is responsible
for CORBA communication only, and any other technologies are out of its scope.

This situation would improve if the CCM platform implemented the Streams
for CCM specification [17]. Local resources could then be accessed by means
of sink and source ports, allowing for better detachment a component from its
execution environment and, in consequence, more transparent migration. This
area is a potential direction for further research.

The proposed migration mechanism is a prototype working with session
components only. It is necessary to develop and test a mechanism suitable for
process and entity component categories, as well as components with multi-
ple segments. Unfortunately, OpenCCM, the platform used as the development
environment, does not support components of other types than session, hence
this direction of work is currently hampered.

Other possible development directions are related to integration of the mi-
gration mechanism with CORBA services, especially Persistent State Service
and Transaction Service, as well as better integration with OpenCCM code gen-
eration tools. Nonetheless, the mechanism presented in this paper allows for
further work concerning adaptive deployment and execution of applications. The

152 J. Ca�la

migration facility, as one of the executive mechanisms, plays there an important
role giving an Adaptation Manager a chance to control component arrangement
of an application.

References

1. Milojičić, D., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process migra-
tion. In: ACM Computing Surveys, pp. 241–299 (2000)

2. Clark, C., Fraser, K., Hand, S.: Live migration of virtual machines. In: Proceedings
of 2nd Symposium on Networked Systems Design and Implementation (2005)

3. Douglis, F.: Transparent Process Migration in the Sprite Operating System. PhD
thesis, University of California at Berkeley (1990)

4. Mullender, S., van Rossum, G., Tanenbaum, A.: Amoeba: A distributed operating
system for the 1990s. IEEE Computer 23(5), 44–53 (1990)

5. de Paoli, D., Goscinski, A.: The RHODOS migration facility. The. Journal of Sys-
tems and Software 40(1), 51 (1998)

6. (openMosix project) Web site at http://openmosix.sourceforge.net
7. Hutchinson, N., Raj, R., Black, A., Levy, H., Jul, E.: The Emerald programming

language. Technical report, Institution (1987)
8. Habert, S., Mosseri, L., Abrossimov, V.: COOL: Kernel support for object-

oriented environments. In: Meyrowitz, N. (ed.) Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pp. 269–277. ACM Press, New York (1990)

9. Tröger, P., Polze, A.: Object and process migration in.NET. In: Proceedings of the
Eighth International Workshop on Object-oriented Real-time Dependable Systems,
pp. 139–146 (2003)

10. Fuggeta, A., Picco, G., Vigna, G.: Understanding code mobility. IEEE Transactions
on Software Engineering 5, 342–361 (1998)

11. Henning, M.: Binding, migration, and scalability in CORBA. Communications of
the ACM 41(10), 62–71 (1998)

12. Killijian, M.O., Ruiz-Garcia, J.C., Fabre, J.C.: Portable serialization of CORBA
objects: a reflective approach. In: OOPSLA, Seattle, USA, pp. 68–82 (2002)

13. Object Management Group, I.: Externalization Service Specification. Object Man-
agement Group, Inc. Version 1.0 (2000)

14. Object Management Group, I.: Life Cycle Service Specification. Object Manage-
ment Group, Inc. Version 1.2 (2002)

15. Object Management Group, I.: CORBA Components. Object Management Group,
Inc. Version 3.0 (2002)

16. (OpenCCM — the open CORBA components model platform) Web site at
http://openccm.objectweb.org

17. Object Management Group, I.: Streams for CCM. Object Management Group, Inc.
Draft Adopted Specification (2002)

http://openmosix.sourceforge.net
http://openccm.objectweb.org

A Serialisation Based Approach for Processes

Strong Mobility

Soumaya Marzouk, Maher Ben Jemaa, and Mohamed Jmaiel

ReDCAD Laboratory
National School of Engineers of Sfax

BPW 3038 Sfax Tunisia
Soumarzouk@yahoo.fr, Maher.benjemaa@enis.rnu.tn,

Mohamed.Jmaiel@enis.rnu.tn

Abstract. We present in this paper a generic approach for process
transformation into strong mobile entity. Our approach is based on
processes Serialisation using source code transformation, which gener-
ates the source code of a strong mobile process. Our approach is suitable
for transforming distributed applications into mobile applications where
every process can be migrated independently any time. We applied our
approach to Java Thread by designing a grammar describing the gen-
erated mobile process code. The evaluation results of generated mobile
Threads shows good performances.

Keywords: Strong Mobility, Source code transformation, Serialisation,
Distributed systems, Java Thread.

1 Introduction

Process strong mobility represents an efficient mechanism for solving many prob-
lems like fault tolerance [GBB05] and load balancing [BSA05]. Moreover, process
strong mobility contributes for managing pair to pair and grid based systems
[CB06],[GYHP06].

In fact, process strong mobility allows the transfer of an executing process
from a source site to a distant site, where it resumes its execution starting from
the interruption point. Thus, strong mobility requires the capture of the process
execution state which is a complicated task since programming languages do not
allow direct access to the process execution stack.

Generally, there is a trade off between efficacity and portability in most works
dealing with strong mobility. Indeed, solutions suggested to solve this problem
are either non portable solutions but offering good performances like those which
are implemented on operating system level [BSA05],[BHKP04],[DO91], and solu-
tions operating on virtual machine level [BHKP04],[SBB+00],[ZWL02], or more
portable solutions but not very powerful like those which operate on compiled
code level [GBB05],[TRV+00],[SSY01], or solutions which operate on process
source code level [BN01],[CWHB03],[Fun98],[CLG05].

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 153–166, 2007.
c© IFIP International Federation for Information Processing 2007

154 S. Marzouk, M. Ben Jemaa, and M. Jmaiel

In this paper, we present a solution for process strong mobility which is:
generic, user transparent, offering a great portability, and rather powerful. Our
solution is based on process serialisation. Object Serialisation consists in sav-
ing current values of its attributes. In case of process serialisation, it consists
in saving the process execution context. This makes it possible to have an im-
age reflecting the instantaneous process execution state to resume the execution
later by carrying out a deserialisation. Our solution consists in simulating the
process execution context with an artificial stack saving a portable image of its
execution state and which does not depend on the used programming language.
This solution is made by a syntactic transformation of the source code, thus
ensuring, the maintenance of the process execution state, while preserving its
original semantics. Therefore, the process migration consists in (1) serialising
the process on the source site, (2) transferring the serialized process towards
the new execution site, (3) deserialising the process and resuming its execution.
We applied our transformation approach for Java Thread by implementing a
precompiler which transforms a Java Thread into a Mobile Thread. This trans-
formation ensures that restarting Thread after migration is enough to continue
its execution starting from the interruption point.

Our approach is distinguished from others in the way that it is completely
transparent since it does not need any changes on the original process code, and
programmer has not to fix interruption points prealably in the process code. In
addition, our approach keeps the instantaneous process state value, so, there is
no need to do periodic checkpointing and rollback to resume a suspended process.
Moreover, the process migration is dynamic and can be repeated an arbitrary
time. Our evaluation tests show that our approach minimizes the execution time
overhead due to codes additions, and keeps a proportionally acceptable execution
time compared to the initial one. Moreover, the generated Thread is totally
portable, thanks to its artificial execution context structure, and it preserves the
semantic of the original Thread.

This paper is organized as follows. We will present in the second section
the related works. Next in the third section, we present a description of our
code transformation approach. Then, in the fourth section, we will present the
evaluation results of our approach applied to Java Threads. Finally, we conclude
and present perspectives of our works.

2 Related Work

Many works dealt with the process strong mobility problem. We classify this
works in four classes according to their action’s level.

First, works which operate on Operating System level [BSA05], [DO91].
These techniques are characterized with a short response delay since all treat-
ments are integrated into the operating system functionalities. However, these
approaches have the disadvantage of forcing all participating nodes to use the
particular operating system. Therefore, the use of this type of solutions can
be done only in a network with homogeneous operating systems. Thus, such a
solution will not be applicable on the grid, for example.

A Serialisation Based Approach for Processes Strong Mobility 155

Second class of work act on Virtual Machine level [BHKP04], [SBB+00],
[ZWL02]. Generally, these solutions were particularly proposed for the Java lan-
guage. They consist in JVM extension to support process strong mobility. These
solutions grant the independence with the operating system layer. However, they
reduce the application portability since they can be executed only on the ex-
tended JVM. This problem is not major if the user work on a local area net-
work but it becomes significant if he wants to distribute the execution over the
Internet.

Other solutions operate on Compiled Code level [GBB05], [TRV+00],
[SSY01], [SSY00]. Most of them choose the Java language as target and transform
process byte codes. These solutions increase the portability of a mobile applica-
tion since it is independent from the operation system and the JVM. However,
such techniques do not allow forced migration by external Thread but only the
Thread itself can initiate its migration. Thus, this solution is not adapted to
carry out load balancing or fault tolerance strategies.

Finally, other solutions act on Source Code level [BN01], [CWHB03],
[CB06], [DR98], [GYHP06],[Fun98], [CLG05], [SMY99]. This approach has the
advantage, to be independent of the operating system, to not modify neither
the interpreter, nor the programming language. Thus it is more portable than
the first three solutions. However, many works adopting this kind of solution
reduce the application portability. In fact, many works use a specific platform
[CWHB03], [CB06], or impose the use of a procedural language [BN01], or MPI
based program [GYHP06], [CLG05]. Others do not allow a forced migration
made by an external application [Fun98], [SMY99], or specifies static checkpoints
in the process source code [DR98].

Table 1. Classification of Work Treating Strong Mobility

References Specific Platform Forced Migration Language

Operating [DO91][BSA05] x v x
System
Virtual [SBB+00][BHKP04] x v Java
Machine [ZWL02] Multi Agent v

Compiled [GBB05][TRV+00] x x Java
Code [SSY00][SSY01]

Source [DR98] x Static C++
Code checkpoint

[GYHP06][CLG05] x Static MPI
checkpoint

[Fun98][SMY99] x x Java
[BN01] x v procedural

Language
X-Klaim

[CWHB03][CB06] Aglet v C++

156 S. Marzouk, M. Ben Jemaa, and M. Jmaiel

In Table 1 1 we summarize related works dealing with strong mobility. We
consider in this classification many criterias like action level, use of a specific
platform, the initiator of migration, etc.

Our approach can be classified under the source code modification class, but
differs from the others in that it is a generic approach since it is independent
of the programming language. It provides a portable solution since it does not
depend on a specific platform. In addition, it is transparent because no manual
changes must be done to the original process code.

We note that [CWHB03] is the most close solution to the present paper,
but our work is distinguished by its portability. Indeed, our pre-processor is
needed only at compilation time, and it doesn’t introduce any restriction on the
executing site configuration. However, in [CWHB03] the mobile agent can be
executed only on a site lodging the agent platform, which restrict the mobility
and do not motivate the use of this solution in a grid environment.

Moreover, our solution offer forced migration which is a very important char-
acteristic of a process strong mobility approach. In fact, non forced migration
signifies that only the process it self can initiate the mobility operation, which
implies that migration is pre-programmed in the process code. For example, in
a load balancing system, process migration is initiated when the execution host
becomes overloaded, which cannot been known in advance. In this case, migra-
tion call cannot be written explicitly in the process code but must be initiated
instantly by an extern application which is in this case the load balancing system.

3 Transformation Approach

Our approach consists in transforming a process into a strongly mobile entity.
This transformation must guarantee

– Persistence: Allowing to save / restore the process execution state at any
execution time,

– Repetitivity: The possibility of repeating the migration operation several
times during process execution,

– Transparency: The original process code does not need any changes
– Portability: The generated mobile process can be run on any machine, what-

ever is its software or hardware configuration,
– Genericity: independency of the programming language.

Actually, a process does not have the persistence character (it is not serialisable).
To make it serialisable, we will use a source code precompiler which transforms
a traditional process into a strong mobile one.

Our approach consists in designing transformation rules of process source code
written in an object-oriented language while providing several functionalities.
First, generated code simulates the instantaneous process execution state by an
artificial structure. Second, it updates this structure while the process execution

1 v : supported; x : unsupported.

A Serialisation Based Approach for Processes Strong Mobility 157

progresses. Finally, it ensures the resumption of the process execution while
preserving its execution semantics.

In the following, we will present details of our process transformation approach
including modelling process execution context, capturing and re-establishing
process state and transformation rules of process code instructions.

3.1 Capturing and Reestablishing Process State

To ensure process strong mobility, we propose two mechanisms: Capturing and
Re-establishing process state mechanisms.

Capturing process state mechanism serves to store an instantaneous image of
process execution progress. It requires modelling and updating process execu-
tion context. Thus, we propose to add to the process source code an attribute
simulating the process execution progress, and instructions updating the process
execution state.

Explicitly, to model process execution state we propose a generic model called
process artificial execution stack. This latter includes the execution progress
state (method entry point) of each called method. Process artificial execution
stack is build by pushing a method entry point for each called method. In fact, an
entry point is an object storing method execution progress state. This object will
include attributes saving the current values of method input data, local variables,
and the position of the next instruction to be carried out by the method. Since
the number and types of these attributes depend on methods data, we generate,
for each called method (process methods or object methods), a class (method
model class) having as attributes the method input data, local variables, and
the position of the next instruction.

In addition, the capturing mechanism includes updating process execution
state. Therefore, we propose to add, for each called method, instructions up-
dating the method entry point with current method data values. Explicitly, we
propose to add at the beginning of each called method (1) instructions which
instantiate the method model class generated to create an entry point corre-
sponding to the method call, (2) instructions which pop the entry point on the
process artificial stack, and (3) instructions initializing the entry point attributes
corresponding to the method input data and local method variables by their ini-
tial values. In addition, in the end of each method, it is necessary to add an
instruction which pop the entry point from the artificial execution stack. More-
over, updating process execution state requires method instructions transforma-
tion which will be detailed in the next section. Thus, the current state of each
method is stored in the artificial execution stack, so the capture of the current
process state consists in suspending the process execution and serialising it.

The second mechanism involved in process strong mobility is Reestablishing
process execution state mechanism. It serves to resume process execution af-
ter migration. Thus, reestablishing process execution state requires integrating
the process execution state captured by the first mechanism in the new process

158 S. Marzouk, M. Ben Jemaa, and M. Jmaiel

execution instance, and resuming process execution starting from the interrup-
tion point.

In order to integrate captured state in the new process execution, each method
has to reference its captured entry point. In fact, we propose to add, in the
beginning of each called method, instructions which refer to the captured method
entry point if it is the reestablishing step.

In addition, reestablishing process state mechanism must ensure that exe-
cution resumption starts always from the interruption point. Thus, we modified
process code by adding instructions ensuring that each method execution restart
from the instruction having the position of the next instruction stored in method
entry point attributes. Doing so, we propose to supervise every method instruc-
tion execution by a test on its position ensuring that the executing instruction
is always the one which has the position of the next instruction.

3.2 Code Transformation

In order to achieve the process transformation into a strongly mobile entity, we
define transformation rules which we will apply to code instructions. To do this,
we classify code instructions into three categories:

– Simple instructions: they are elementary instructions, which include assign-
ments, inputs/outputs instructions, calls of method belonging to the process,
etc.

– Composed instructions: they are blocks of code containing loops or control
structures.

In the following subsections, we will define for each type of instruction, corre-
sponding transformation rules. We describe also code transformations of Shared
object(remote object used by many process) and we propose optimizations for
our transformation rules.

Transformation of Elementary Instructions. Simple instructions transfor-
mation serve to ensure execution state updating and execution resumption while
preserving execution semantics. Process execution state updating is ensured by
replacing all occurrences of local variables and input data of the method with ref-
erences to the attribute of the corresponding entry point. Moreover, after each in-
struction execution, the value of the next instruction position to be executed must
be updated. Therefore, after each instruction of the transformed code, we propose
to increment the position value of the next code instruction to be carried out. For
example, if the following instruction belongs to a method called m 1 : x = y ;
Where x is a local variable and y a method input data, it will be then replaced
with:

Entry Point m 1.x = Entry Point m 1.y ;
Entry Point m 1.position++ ;

A Serialisation Based Approach for Processes Strong Mobility 159

In addition, to ensure resuming process execution after migration, every code
instruction must be supervised by testing the value of its position. Consequently,
the instruction x = y ; will be replaced with:

if(Entry Point m 1.position==current position) {
Entry Point m 1.x = Entry Point m 1.y ;
Entry Point m 1.position++ ; }

Besides, we must be sure that the execution interruption will not take place
after the instruction execution and before the position update. Therefore, we
propose to consider the transformation result of an instruction as an atomic
operation which can’t be interrupted by serialisation. The transformation of the
instruction: x = y ; will be as follows :

Lock Serialisation();
if(Entry Point m 1.position == current position) {

Entry Point m 1.x = Entry Point m 1.y ;
Entry Point m 1.position++ ;

} Unlock Serialisation();

Thus, these transformations applied for simple instructions, guarantee process
execution state updating, as well as reestablishing after migration, while preserv-
ing its execution semantics.

Transformation of code with Loops and controls structures. The diffi-
culty which arises for the case of loops and control structures is the update of
position of next instruction to be carried out.

In fact, the code transformation has to preserve the execution semantics,
whatever the interruption position is, during loop or control structure execution.
Next, we will study the case of the structure while (while(cond) Bloc;) ”Fig1”
and if-else (if(cond) Bloc1; else Bloc2;) ”Fig2”.

while ((pc >= inPc(Bloc_transformed)) && (pc <= outPc(Bloc_transformed))) {

if (pc == inPc(Bloc_transformed) && !cond) {

// condition not verified

pc = outPc(Bloc_transformed)+1;

break;

}

Bloc_transformed;

if (pc == outPc(Bloc_transformed))

pc = inPc(Bloc_transformed);

}

Fig. 1. Transformation of while loop

160 S. Marzouk, M. Ben Jemaa, and M. Jmaiel

if (((pc >= inPc(Bloc1_transformed)) && (pc <= outPc(Bloc1_transformed))) ||

(pc == Pc(If) && cond)) {

Bloc1_transformed;

if (pc == outPc(Bloc1_transformed)) {

// end of the block if: jump the block else.

pc = outPc(Bloc2_transformed) + 1;

}

} // if the condition is not verified: enter to the block else

else {

 if (pc== inPc(thisIf))

 pc = outPc(Bloc1_transformed) + 1;

}

if ((pc>= inPc(Bloc2_transformé)) && (pc <= outPc(Bloc2_transformed))) {

Bloc2_transformed;

}

Fig. 2. Transformation of if - else structure

with:

– Bloc1 transformed represent the transformation result of Bloc1.
– outPC(Bloc transformed) represent the first position in Bloc transformed.
– inPc(Bloc transformed)represent the last position in Bloc transformed
– Pc(if) represent the position of the if instruction. Indeed, we attribute to

the if instruction a position to ensure that the if condition will be evaluated
only once.

The code given above preserves the initial semantics whatever the execution
stop point in this code.

Transformation of Shared Objects. In this step, we extend our transforma-
tion to support dependent process. Indeed, we propose to transform distributed
applications including dependent process using shared object on mobile appli-
cation where every component can be moved from a site to another at any
execution moment. All transformations presented above remain valid including
transformation of shared object methods. Nerveless, if a process migrates while
executing shared object method, the execution coherence may be lost. Thus, we
propose to add an artificial lock to a shared object which interdicts the execution
of a method belonging to a shared object used by a migrating process. That is,
if a process migrate while executing a shared object method, it must lock the
shared object until resuming the interrupted method. In addition, every process
trying to execute a shared object method must verify if this object is unlocked

A Serialisation Based Approach for Processes Strong Mobility 161

before calling the method. Thus, every call of a shared object method in the
process code must be supervised by a test on the shared object artificial lock.

Optimizing the transformed code. In order to optimize the transformed
code, we propose to affect a position number for blocks containing more than
one instruction. Thus, an instructions block, with the update instruction of its
corresponding position, will form an atomic operation during which a seriali-
sation is not authorized. This makes it possible to reduce the size of the code
added compared to the initial code, and consequently to reduce the execution
time of the transformed process. This modification requires several rules for the
choice of blocks.

First, blocks should not contain the headings of controls structures or of loops
of the original code. This case can generate compilation errors, since it causes
crossed loops.

Second, the method call must be an elementary block or in extreme cases,
must be at the beginning of a block. Otherwise, if a serialisation starts during
the method execution, block instructions which are before the method call will
be re-executed after migration.

Third, the block size must be quite selected not to be, neither too large causing
the delay of the serialisation operation, nor too small causing the increase of the
size of the generated code compared to the original code.

We propose also another optimization, which consists in not applying trans-
formations concerning loops and control structures in all cases. Indeed, if the
code carried out by a loop or a control structure is simple (without imbricated
structures, without call of object methods), we propose to assign to this struc-
ture only one position number, and thus to authorize the serialisation only at
the end of the execution of all the structure code. For the case of loops, this
solution remains valid if the total number of instructions to be carried out by
the loop is not very large. Otherwise, in general case, we propose to allow the
serialisation at the end of each iteration.

4 Performance Evaluation

In order to evaluate performances of the generated mobile process, we apply our
transformation rules to Java Threads. Thus, we designed a grammar describing
the Java syntax of the mobile Thread transformed code, and we implement a
source code transformer which takes a java Thread as entry and generates the
equivalent mobile Thread.

In order to evaluate our solution performance, we present the evaluation
results of our transformed process execution times, compared to the original
processes execution time. We used a mobile computer equivalent processor Cen-
trino 1,7 GHz and having a 1Go size of RAM.

We evaluate the execution time increase, due to the code portions added by
our transformer. Moreover, the evaluation of our solution will be based on several
criteria:

162 S. Marzouk, M. Ben Jemaa, and M. Jmaiel

– Criteria related to the original process: code complexity, code size.
– Criteria related to the transformation: maximum size of the elementary in-

struction block.
– Criteria related to the execution: data size.

We can notice that the transformation overhead is relatively big for an execution
with small data size ”Fig3” This can be explained by the fact that the added
code can be classified in two classes. First, the initialization code which has a
constant size and which is carried out only once at the beginning of each method.
Second, the updating code which has a variable size according to the original
code size, and which can be carried out several times, according to the size of
the input data.

0

500

1000

1500

2000

2500

3000

Qsort(100) Qsort(1000) Qsort(10000)

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

Transformation

overhead w ith bloc=1

Transformation

overhead w ith bloc=4

Original Execution

0

5000

10000

15000

20000

25000

30000

Matrix sum(500) Matrix sum(1000)

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

Transformation

overhead w ith bloc=1

Original execution

Fig. 3. Transformed Thread Execution time compared to the original Thread execution
time

Thus for small size data or for processes having small methods size, and for
the same complexity, the overhead of the transformed process execution time
compared to that of the original process is proportionally big, since the initial-
ization code is of constant size. This also explains, the overhead increase, for
the same code, when the data size increases ”Fig3”. Indeed, since the data size
increases, the iteration number also increases, and consequently the iteration
execution number of added code increases too. Moreover, the increase in the
maximum block size of atomic instructions causes the decreases of the trans-
formation overhead. This phenomenon happen because the atomic instructions
blocks number decrease induced that the added code became smaller than the
original one.

We also stress that the overhead is increasingly big, when the number of
overlapping loops increases, and especially when the loop code is of small size,
a typical example is the multiplication of two matrices. In this case, the added
code size becomes large compared to the original code, and considering the
great iteration number and the code complexity, the transformed code execution

A Serialisation Based Approach for Processes Strong Mobility 163

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
u
lti

p
lu

c
a
tio

n

M
a
tr

ic
e
(1

0
0
x
1
0
0
)

M
u
lti

p
lu

c
a
tio

n

M
a
tr

ic
e
(2

0
0
x
2
0
0
)

M
u
lti

p
lu

c
a
tio

n

M
a
tr

ic
e
(5

0
0
x
5
0
0
)

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

optimised overhead

 Original execution

Fig. 4. Execution time of Mobile Thread having an Optimized code

becomes very heavy. To cure this type of behaviour, we presented an optimization
in section 3.2.4. The results relating to this optimization are presented in ”Fig4”.

Following, we aim to evaluate the serialisation/deserialisation operation. Thus,
we will use Matrice Multiplication 500X500 Thread, without taking into account
the process transfer cost, which depends on the network conditions. Presented
results in ”Fig5” correspond to the Thread execution time stopped at the instant
”interruption time”, serialized, deserialized, and resumed on the same execution
site. These results show that the serialisation/deserialisation operation of process
has a weak cost. Consequently, the integration of the execution context opera-
tion which requires a partial re-execution of the process code is not an expensive
operation.

Next, we aim to evaluate the cost of migration of a process belonging to a
distributed application. In this context, we use a producer/consumer application.
This application involves a producer mobile process, a consumer mobile process
and a Remote Object representing the Buffer.

8412 8472 8512 8442

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1000 4000 6000 8000

Interruption time (ms)

E
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

overhead of

serialisation/deserialisation"

Optimised transformation

overhead

Original execution

Fig. 5. Execution time of Multiplication matrix Thread (500X500) with serialisation/
deserialisation operation

164 S. Marzouk, M. Ben Jemaa, and M. Jmaiel

Consumer Migration

0

200

400

600

800

1000

1200

100 integer 500 integer

Data size

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Migration at 200ms

Without Migration

Producer Migration

0

200

400

600

800

1000

1200

100 integer 500 integer

Data size

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Migration at 200ms

Without Migration

Fig. 6. Overhead introduced by process migration of producer/consumer application

In ”Fig.6” we represent the overhead caused by the migration of the producer
process and the consumer process at different execution moment and for different
data size. We notice that the overhead introduced by the migration of producer
or consumer process is very small.

5 Conclusion

In this paper, we proposed a generic solution for the processes strong mobility,
with great portability, completely transparent and rather powerful. Indeed, our
approach consists in transforming process into a serialisable object. Through-
out its execution, our mobile process could migrate several times from a site
to another, at any execution time, without losing its execution state, nor the
semantics of the original process. Our approach is novel in that it was designed
to be completely transparent to the programmer, requiring no changes to the
original application code. Moreover, our approach makes it possible to generate
completely portable mobile processes. Indeed, our approach is independent of
the used platform and there are no software or material constraints on the mi-
gration participating sites. In addition, our approach makes it possible to force
the process migration starting from an external application, which allows its use
to implement load balancing, fault-tolerance, peer to peer or grid based systems.
We apply our transformation approach for Java Thread. Indeed, to achieve the
process migration, it suffies to apply the transformation to the original process
code, to compile the generated classes and to launch the Mobile Thread exe-
cution from any host lodging the JVM. Thread can be stopped and migrated
towards any host lodging the JVM, at any moment of its execution and an ar
number of times for the same execution.

Our work perspectives consist in providing solutions to the problem of re-
source sharing (file, socket) between mobile processes. Indeed until this stage,
the Thread migration using a shared resource does not preserve execution se-
mantics. We aims also to validate our code transformer, in order to affirm that

A Serialisation Based Approach for Processes Strong Mobility 165

the transformation is purely syntactic and that the mobile process always pre-
serves the original process semantics. Another prospect consists in using this
approach of mobility for the implementation of a load balancing system or fault
tolerant grid based applications. Doing so, an execution environment should be
developed.

References

[BHKP04] Bouchenak, S., Hagimont, D., Krakowiak, S., Palma, N.: Experiences im-
plementing efficient java thread serialization (2004)

[BN01] Bettini, L., De Nicola, R.: Translating strong mobility into weak mobility.
In: Picco, G.P. (ed.) MA 2001. LNCS, vol. 2240, pp. 182–197. Springer,
Heidelberg (2001)

[BSA05] Barak, A., Shiloh, A., Amar, L.: An organizational grid of federated mosix
clusters. In: CCGRID ’05. Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’05), vol. 1,
pp. 350–357. IEEE Computer Society, Washington, DC (2005)

[CB06] Chakravarti, A.J., Baumgartner, G.: Self-organizing scheduling on the
organic grid. International Journal of High. Performance Computing Ap-
plications 20(1), 115–130 (2006)

[CLG05] Cao, J., Li, Y., Guo, M.: Process migration for mpi applications based on
coordinated checkpoint. In: ICPADS ’05. Proceedings of the 11th Inter-
national Conference on Parallel and Distributed Systems (ICPADS’05),
pp. 306–312. IEEE Computer Society, Washington, DC (2005)

[CWHB03] Chakravarti, A.J., Wang, X., Hallstrom, J.O., Baumgartner, G.: Imple-
mentation of strong mobility for multi-threaded agents in java. icpp, 00,
pp. 321 (2003)

[DO91] Douglis, F., Ousterhout, J.K.: Transparent process migration: Design al-
ternatives and the sprite implementation. Software - Practice and Expe-
rience 21(8), 757–785 (1991)

[DR98] Dimitrov, B., Rego, V.: A portable threads system supporting migrant
threads on heterogeneous network farms. IEEE Transactions on Parallel
and Distributed Systems 9(5), 459 (1998)

[Fun98] Funfrocken, S.: Transparent migration of java-based mobile agents. In:
Mobile Agents, pp. 26–37 (1998)

[GBB05] Garbacki, P., Biskupski, B., Bal, H.E.: Transparent fault tolerance for grid
applications. In: EGC, pp. 671–680 (2005)

[GYHP06] Gao, Q., Yu, W., Huang, W., Panda, D.K.: Application-transparent check-
point/restart for mpi programs over infiniband. In: ICPP ’06. Proceedings
of the 2006 International Conference on Parallel Processing, pp. 471–478.
IEEE Computer Society, Washington, DC (2006)

[SBB+00] Suri, N., Bradshaw, J., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R.:
Strong mobility and fine-grained resource control in nomads. In: Kotz,
D., Mattern, F. (eds.) MA 2000, ASA/MA 2000, and ASA 2000. LNCS,
vol. 1882, pp. 2–15. Springer, Heidelberg (2000)

[SMY99] Sekiguchi, T., Masuhara, H., Yonezawa, A.: A simple extension of java
language for controllable transparent migration and its portable imple-
mentation. In: Coordination Models and Languages, pp. 211–226 (1999)

166 S. Marzouk, M. Ben Jemaa, and M. Jmaiel

[SSY00] Sakamoto, T., Sekiguchi, T., Yonezawa, A.: Bytecode transformation for
portable thread migration in java. In: ASA/MA, pp. 16–28 (2000)

[SSY01] Sekiguchi, T., Sakamoto, T., Yonezawa, A.: Portable implementation of
continuation operators in imperative languages by exception handling. In:
Romanovsky, A., Dony, C., Knudsen, J.L., Tripathi, A.R. (eds.) Advances
in Exception Handling Techniques. LNCS, vol. 2022, p. 217. Springer,
Heidelberg (2001)

[TRV+00] Truyen, E., Robben, B., Vanhaute, B., Coninx, T., Joosen, W., Verbaeten,
P.: Portable support for transparent thread migration in java. In: Kotz,
D., Mattern, F. (eds.) MA 2000, ASA/MA 2000, and ASA 2000. LNCS,
vol. 1882, pp. 29–43. Springer, Heidelberg (2000)

[ZWL02] Zhu, W., Wang, C.-L., Lau, F.C.M.: Jessica2: A distributed java virtual
machine with transparent thread migration support. In: IEEE Fourth In-
ternational Conference on Cluster Computing, Chicago, USA (September
2002)

Parallel State Transfer in Object Replication Systems

Rüdiger Kapitza1, Thomas Zeman1, Franz J. Hauck2, and Hans P. Reiser3

1 Dept. of Computer Science 4, University of Erlangen-Nürnberg, Germany
rrkapitz@cs.fau.de, sithzema@cip.informatik.uni-erlangen.de

2 Institute of Distributed Systems, Ulm University, Germany
franz.hauck@uni-ulm.de

3 LASIGE, Departamento de Informática, University of Lisboa, Portugal
hans@di.fc.ul.pt

Abstract. Replication systems require a state-transfer mechanism in order to re-
cover crashed replicas and to integrate new ones into replication groups. This
paper presents and evaluates efficient techniques for parallel state transfer in such
systems. These techniques enable a faster integration of replicas and improve
overall service availability. On the basis of previous work on distributed down-
load in client-server and peer-to-peer systems, we obtain parallel state-transfer
mechanisms for replicated objects. Our algorithms support static and dynamic
distributed download of state without a priori knowledge about the state size.
A non-blocking transfer minimises the time of service unavailability during state
transfer. In addition, partial state capturing is presented as an additional technique
that improves the parallel transfer of large states.

1 Introduction

Replication is an established way for building reliable distributed applications. In any
replication system, state transfer is required for initialising new replicas as well as
for updating and recovering existing replicas. With the ongoing trend towards self-
organising, dynamic distributed systems, state transfer is becoming an essential aspect
of system performance and availability. For example, if the membership in a replica
group changes frequently, the efficiency of the state transfer plays a non-negligible role
in total system performance. In addition, synchronising the state transfer with state
modification usually requires suspending the application for at least part of the duration
of the transfer. This suspension time reduces system availability.

Current replication systems often use a very simple strategy for transferring the state
from an available replica to the new replica. In this paper, we analyse ways to im-
prove the performance of state transfer in replica groups. Non-blocking state transfer
minimises the suspension time during the transfer, and parallel transfer from multiple
state-providing replicas to a target avoids bottlenecks in the network. We evaluate the
impact of various state-transfer techniques on the performance and availability of the
running application.

This paper is structured as follows. The next section analyses the challenges of state
transfer in object replication system and discusses related work. Section 3 presents the
non-blocking and parallel variants of state transfer in our architecture. Section 4 gives
a detailed experimental evaluation and Section 5 concludes.

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 167–180, 2007.
c© IFIP International Federation for Information Processing 2007

168 R. Kapitza et al.

2 Background and Related Work

The transfer of the state of an application raises the following basic questions:

– The internal application state needs to be serialised, i.e., be converted into a location-
independent representation that can be transferred over the network.

– The state transfer (or, more precisely, the serialisation process) needs to be coordi-
nated with the normal operation of the replicated application.

– The state needs to be transferred over the network.

In our prototype, the serialisation is delegated to the application. The replicated ob-
ject needs to implement two methods: a getState method serialises the object’s state
into a byte stream, and a setState method sets the object’s state on the basis of data
read from a byte stream. The infrastructure provides these streams; different variants
of the stream implementation can, for example, read/write directly from/to a network
socket or from/to a file on a local disk. This streaming approach allows concurrency
between the serialisation and the actual remote transfer, and it avoids the necessity of
fully storing the serialised state. Thus, it perfectly qualifies for transferring large states.

This paper focuses on the other two questions. While most replication infrastruc-
tures need to suspend an application before state transfer and resume it afterwards, we
minimise this suspension time. In addition, while current systems use a simple trans-
fer from a single node to another, we analyse strategies for parallel state transfer from
multiple up-to-date replicas to a target replica. In the following, we first discuss basic
approaches to state transfer, then extend the discussion to parallel transfer mechanisms.

2.1 Basic Approaches to State Transfer

In an object replication system, the state transfer needs to be coordinated with the ex-
ecution of object methods. The state has to be captured atomically, without concurrent
modifications. Furthermore, the state must be captured at a specific point of time. For
example, if a new replica joins a group of actively replicated objects, it needs the current
state at the moment of the membership change.

The state transfer can be made in a blocking, non-blocking, and checkpoint-based
way. Most systems support state transfer at the group-communication level. Cabaas
and Mestras [1] give an overview of existing approaches to state transfer in replication
frameworks, and discuss the coordination of state transfer with system operation.

In a blocking transfer, a replica resumes the execution of client requests only after
the state is fully transferred to the target node. Arjuna [2] and Electra [3] support an
automatic state transfer when a new member joins a replication group and block the
whole system during the transfer. Phoenix [4] blocks only the members involved in
the state transfer. All three systems block at least some of the group members for the
complete duration of the state transfer. For large application states, this can lead to long
response times [5].

In a non-blocking transfer, it is necessary only to capture the state atomically. The
captured state can, for example, be stored in memory for small states, or written to
hard disk for larger states. The node can resume execution while the captured state is
afterwards transferred to the target over the network. Systems such as JGroups [6] and

Parallel State Transfer in Object Replication Systems 169

Eternal [7] provide such a non-blocking solution. However, both systems target at the
transfer of small application states that can be stored in main memory.

A checkpoint-based approach is a third variant for state transfer, used for example by
Mishra et al. [8] and Castro [9]. In this approach, every replica makes periodic check-
points and records all client requests after the last checkpoint to a log. For state transfer,
the existing checkpoint and log can be transferred to the target, without the need for
explicit state serialisation at the moment of state transfer.

In the domain of replicated database systems, existing work covers the recovery of
replicas using the coordination support offered by group communication frameworks
[10,11]. Unlike the approaches discussed above, these systems primarily target the re-
covery of replicas by using system properties of databases. Thus, the proposed concepts
can not be directly applied to object replication systems.

This paper targets at improving and extending non-blocking as well as blocking ap-
proaches for direct state transfer in the context of object replication systems. Some of
the proposed techniques can also be applied to the checkpoint-based state-transfer ap-
proach, but this is not addressed further.

2.2 Parallel Transfer

Parallel transfer of state is not popular in object replication system, but it is a standard
technology in other domains such as distributed download and peer-to-peer file-sharing
systems.

Rodriguez, Kirpal and Biersack [12] propose two methods for parallel download
named history-based TCP parallel access and dynamic TCP parallel access. Both ap-
proaches require a dedicated unicast connection from the client to each of the providing
servers. The first approach adapts the packet size depending on the available bandwidth
of the accessed servers, estimated on the basis of bandwidth information gathered in
earlier accesses. According to the authors, history based TCP parallel access produces
good results if the network and server conditions are constant, but lead to poor perfor-
mance otherwise. The dynamic TCP parallel access does not rely on potentially out-
dated history information. A file that is to be downloaded is divided into N blocks of
equal size. The client requests a different block from every server. If a client has com-
pletely received a block, it requests a new, not yet downloaded block from that server.
This simple approach assigns more blocks to faster servers, but fully loads all servers.
Rodriguez et al. [13] discuss the problem that a server has an idle phase between the end
of transmission of a block and the reception of a succeeding request. They suggest re-
quest pipelining to avoid these inter-block idle times. A new block should be requested
at least one round-trip-time (RTT) before the current block is fully received.

Vazhkudai [14] proposes similar parallel access approaches, but targets at downloads
of large data sets in a grid infrastructure instead of focusing on clients that access small
and mid-size documents. The simplest proposed approach is brute-force co-allocation,
in which a file is divided in n equal parts that are downloaded in parallel, with n cor-
responding to the number of state-providing servers. This approach takes advantage
of all servers, but the time to transfer the whole file depends on the slowest connec-
tion and server. Another scheme proposed as predictive co-allocation corresponds to
the history based TCP approach. Third, Vazhkudai describes two variants of a dynamic

170 R. Kapitza et al.

approach that takes server and network conditions into account: conservative load bal-
ancing and aggressive load balancing. The first variant is equivalent to dynamic TCP
without pipelining. The second variants uses heuristics to increase the amount of data
requested from fast servers, and reduce the amount requested from slow servers or even
exclude them from download altogether.

3 Decentralised State-Transfer Algorithms

In the following, we adapt the terminology of Xu et al. [15], who classify state-transfer
approaches as static-equal, static-unequal, and dynamic. In contrast to previous work,
we present an implementation that is adapted to fit the needs of distributed state transfer
in active object replication. Our infrastructure provides two variants: The first variant
is static equal, which assigns equal shares to all state-providing servers and uses small
blocks to enable a continuous data flow. The second variant is dynamic and can be
compared to dynamic TCP [12] and brute-force co-allocation [14]. In contrast to those
systems, we support novel approaches for runtime optimisation that are beyond the
typical mechanisms in distributed download applications.

The first issue in object replication systems is that the size of the transfer data is
not known in advance. The transfer data is the result of an application-specific serial-
isation process, and thus it will be created “ad-hoc” at the moment the state transfer
is requested. Theoretically, it is possible to first acquire the complete state from the
application and then start the transfer. This is inefficient in terms of transfer time (the
network transfer is delayed instead of being started in parallel to the state serialisation)
and in terms of resource usage (if the state is transferred during serialisation, it is not
necessary to store the full serialised state in memory or on disk). Thus, we propose
algorithms that do not require the state size to be known a priori.

The second key issue is related in terms of resource usage: At the target of the state
transfer, it is desirable to pass the serialised state data directly to the deserialisation
process. This way, the need for storing a full copy of the serialised data in parallel to
the deserialised data can be eliminated. Such functionality, however, requires that state
data arrive in correct order. Some buffers for temporarily storing out-of-order data can
be provided, but we want our algorithms to provide flow-control mechanisms that limit
the size of such temporary storage. As a result, our approach ensures a low resource
demand.

3.1 Terminology

In our system, the state data is transferred from a set of state providers to a single
transfer target. The transfer protocols are defined by the exchange of data requests
from the transfer target to state providers and data replies in the opposite direction. We
use the following terminology:

– S is the set of state providers (servers).
– D is the state data to transfer. The size |D| is not known in advance.
– A data request is defined by a tuple < si, start, end >; siεS, start represents the

first byte and end represent the last byte of a requested byte sequence.

Parallel State Transfer in Object Replication Systems 171

– A data reply is defined as < start, B >, in which start determines the absolute
position in the state data and B represents a transmitted byte sequence, which we
call a block.

If the requested block starts beyond the end of the state data (start > |D|), a state
provider will indicated this fact with an empty response (B = {}). It is possible that a
transfer target requests blocks beyond the end, as |D| is not known in advance.

3.2 Parallel Transfer: Static Equal

The most simple strategy for distributed file transfer is static equal. The transfer data is
split into n pieces of equal size, with n being the number of servers hosting a replica.
Each replica thus has to provide a part of the state data. If the size of the transfer data
is known in advance, it can easily be split into n pieces, like is done by Vazhkudai [14]
and Gkantsidis et al.[16].

Without such knowledge, we must use a different approach. Each server should
provide an equal amount of the state. The solution that we propose is to divide the
state into small blocks of static size and to organise the transfer in rounds. In each
round, the target sends a request to each server in a round-robin way, requesting a new
block that has not been transferred yet. We assume that the block size |B| is defined
at transfer start. In round n (n ∈ N0), the requests can be constructed as follows:
< i, nr + (i − 1)|B|, nr + i|B| − 1 >, where i = 1, ..., |S| designates the target of the
requests. A round transfers r = |B||S| of data.

As the state size is not known in advance, we define startmax = +∞. If a response
a with D = {} is received, we compute startmax = min(startmax, starta). Now, all
requests start = nr +(i− 1)|B| > startmax can be discarded. As there might be out-
of-order transmissions, one has to wait for all pending requests with start ≤ startmax.
On the server side, the first request b that arrives with startb ≥ |D| causes the server
to send a response B = {}. All subsequent messages requesting data behind the end
of D can be ignored. The server still has to continue participating in the state-transfer
protocol, as requests for blocks before the end position might arrive out of order.

Requesting small blocks is expensive in terms of control messages, as for every block
a request message has to be sent. We use batching to reduce the number of control
messages. Instead of requesting only one block at a time, the set of all blocks of a
configurable number of rounds p is requested from a state provider with a single mes-
sage. Batching can easily be combined with pipelining, as suggested by Rodriguez and
Biersack [13]. With pipelining, the requests for a new batch round are sent before the
previous requests has fully been answered, thus reducing or eliminating the idle time of
the servers between requests.

Instead of batching, two other ways might be used to reduce the cost of control mes-
sages. First, using a large block size could reduce the number of requests. Unfortunately,
this strategy defeats our goal of providing a continuous stream of data that can directly
be fed to the deserialisation process and thus would increase the resource usage at the
receiver side. Second, the sequence of blocks could be assigned statically to each state
provider at the transfer start. This way, each server would start to transfer every n-th
block triggered by a single start message. This strategy leads to problems if the relative

172 R. Kapitza et al.

speed of the servers differs. Again, parts of the state of very different positions might
arrive at a time, requiring large buffering and thus causing resource consumption at the
receiver side. Consequently, there is a need for flow control, and using explicit requests
for each block (or set of blocks) automatically provides such a control mechanism.

3.3 Parallel Transfer: Static Unequal

Some existing approaches to parallel file transfer use a technique called static unequal
by Xu et al. [15]. The difference to static equal is the addition of a phase that estimates
the transfer speed from the replicas. This estimation is later used to distributed the size
of the state portions that are transferred according to the relative speed. This way, faster
nodes are statically assigned a larger part than slower ones.

Theoretically, this principle could also be applied to parallel state transfer, using the
same extensions as for static equal. The disadvantage of static unequal, however, is the
addition of the estimation phase that delays the actual phase. A similar estimation can
be obtained from the transfer of the first blocks in the subsequently described dynamic
approach. The dynamic approach, however, is able to adjust the distribution of blocks
dynamically, and, especially if flow control is used, adds no overhead compared to static
unequal. Thus, we consider only the dynamic approach.

3.4 Parallel Transfer: Dynamic

While the static-equal algorithm assigns an equal part of the work to each server, dy-
namic adapts the request strategy at runtime, taking network and server condition into
account. Our algorithm uses a novel approach to runtime adaptation and, in addition,
introduces batching for optimisation.

The basic idea of the algorithm is to request a new block from a server each time the
previously assigned block has been fully transferred. This ensures that servers which are
less loaded and have a better connection (i.e., higher bandwidth and smaller round-trip
time) transmit more data. As a result, the overall transfer time no longer depends on the
slowest server, as it is the case for static equal. Similar to our static-equal approach, we
obtain a continuous data stream with only minimal signalling overhead with a batching
technique.

Our dynamic algorithm adapts the batch size individually for each server. A new
batch is requested immediately after the first block has been successfully received, as
shown in Figure 1. The key idea is to find an optimised batch size. If too much data
is requested, this leads to bad performance in case that the state provider or the corre-
sponding network connection slows down. On the other hand, if too few blocks (in the
extreme, only one block) are requested, this causes undesirable idle times at the state
provider. The ideal is to compute the batch size in a way such that a new batch request
reaches the server when the last block of the previous batch has been fully transmit-
ted. As this is not possible due to the unpredictable behaviour of the network and the
server load, an estimation is used. We use a strategy inspired by Rodriguez and Bier-
sack [13], who suggest to estimate an upper bound of the RTT and use this as a mark
for submitting the next request.

Parallel State Transfer in Object Replication Systems 173

Client Server

tt

t a

RTT

(a) Sub-optimal batchsize (p=3) caus-
ing idle time

Client Server

tt

RTT

(b) Optimal batchsize (p=5)

Fig. 1. Static Dynamic request scheme with adaptive batch size

Figure 1(a) shows an idle time, ta, that should be avoided by adjusting the batch size.
As shown in Figure 1(b), the batch size should be as big as it is necessary to keep the
state provider busy until the next requests arrives. The value of ta can be computed as
ta = RTT − tt(p − 1) = RTT − b

C (p − 1). In this formula, tt is the transfer time
for a single block, b denotes the block size, p is the batch length, and C is the transfer
speed of the network. In the optimal case we require ta = 0, and thus we can compute
p = RTT C

b + 1. The value of p depends on runtime conditions. An estimate of C

can be determined by measuring the time tt and computing C = b
tt

. The RTT can be
measured in a straightforward way. As both values depend on runtime measurements
that might temporarily fluctuate, an exponential moving average is used to eliminate
outliers and to include previous values, but give more recent ones more impact. If the
computed batch length is very short, the benefit of batching vanishes, causing a high
request overhead. To compensate this fact, we introduce a configurable minimal batch
length (e.g., 3).

3.5 Partial State Capturing

In a non-blocking state transfer, the serialised state data is temporarily stored at the state
providers. If the state size exceeds the available memory, disk storage has to be used.
Writing the state to disk is a bottleneck that limits the performance of the state acqui-
sition, and thus also determines the period of unavailability during state serialisation.
Moreover, starting the network transfer of the state in parallel to the state serialisation
causes concurrent read and write operations on the same disk, which further decreases
the performance.

The performance penalty of writing state data to disk can be reduced in a parallel
download strategy by writing only a partial state to disk at each state provider. This
requires a coordination between state capturing and state transfer. In case of the static
equal approach, the parts of the state that a replica has to transmit are known at transfer

174 R. Kapitza et al.

start, and thus the state acquistion process at node si only has to write the corresponding
parts of the state, which are the blocks si + n|S| (n ∈ N0).

Using the same approach with the dynamic transfer strategy is more difficult, as
there is no fixed rule that defines the blocks that are requested from a replica. Instead,
the blocks are defined at run-time. If all replicas write disjunct parts of the state, only
a static equal transfer can be used. Using partial state capturing with dynamic transfer
can, however, be used with a more relaxed rule. All replicas can write overlapping
parts of the state (for example, by letting every replica write half of the state). The
writing strategy must be defined at transfer start, and the request algorithm must take
into account the availability of blocks at each state provider. The amount of overlap is
a trade-off between being able to redistribute load and being able to reduce the cost of
state capturing.

4 Experimental Evaluation

This section gives a brief overview of our prototype implementation and evaluates the
parallel state-transfer strategies discussed in the previous section in a homogeneous
LAN environment and a heterogeneous WAN setting. Finally, the impact of a non-
blocking state transfer on service availability is investigated.

4.1 Implementation Overview

The proposed algorithms and mechanisms have been implemented as a protocol layer of
the Java-based JGroups [6] group communication framework, which is used for repli-
cation support in our Aspectix middleware [17]. JGroups has a modular protocol stack
that is configured at start-up time. An application accesses the framework via a chan-
nel that provides a socket-like communication endpoint. A channel provides a local
unique address and enables an application to exchange unicast messages with single
members and multicast messages with all members connected to the channel. Each
protocol can be configured via properties during the stack initialisation. There are es-
sentially two kinds of transmission units named events and messages. Events represent
a signalling mechanism for corresponding protocol layers. Messages are application-
dependent transmission units.

The message sequence diagram in Figure 2 outlines the basic signalling of the non-
blocking variant of our distributed state-transfer protocol. Initially, an application re-
quests its current state via GET_DSTATE. The distributed state transfer protocol (dstp)
layer immediately returns a Java InputStream to the application, which uses this
stream to deserialise the state. Next, the dstp layer sends a NEED_CURRENT_STATE
message to all members including the local node. This event causes all members to en-
queue all subsequent messages and a GET_APPSTATE message is forwarded to the
replicas. This message includes a Java OutputStream, which the application uses
to serialise the state. All members of the group that reply by sending an event named
STATE_VIEW. If there is already an ongoing state transfer, this message and all other ac-
tions are suppressed. The joining node will be informed by STATE_TRANSFER_DONE
that an earlier initiated state transfer has finished and can restart its state request by re-
sending NEED_CURRENT_STATE. If there is no active state transfer, the requesting

Parallel State Transfer in Object Replication Systems 175

node will receive the STATE_VIEW message events of all group members. Collecting
these messages provides the information about all fully-functional nodes, enabling the
requesting node to compute the request strategy. For example, assuming a non-blocking
state transfer with partial state writing and the dynamic algorithm, not every node can
provide every part of the state. Consequently, this has to be taken into account when
requesting parts of the state. After reception of the STATE_VIEW message, the join-
ing node can request the state according to the request strategy by sending dedicated
DATA_REQUEST messages, which are answered by DATA_RESPONSE messages. As
soon as the requesting node has received the whole state, the state transfer is finished by
sending a STATE_TRANSFER_DONE.

Application DSTP ApplicationDSTP

GET_DSTATE

DSTATE_STREAM
NEED_CURRENT_STATE

start queueing

start queueing

GET_APPSTATE
start stream output

STATE_VIEW

DATA_REQUEST

DATA_RESPONSE

STATE_TRANSFER_DONE

stop queueing

stop queueing

send messages

send messages

close stream

Fig. 2. Message Exchange of the Non-Blocking Distributed State Transfer Protocol

4.2 State Transfer in a Homogeneous LAN Environment

Group communication and active replication of objects often takes place in a homoge-
neous cluster environment. Thus, the following measurements have been made on a set
of PCs with a AMD Athlon 2.0 GHz CPU and 1 GB RAM, using Linux kernel 2.6.17,
SUN Java SDK 1.5.0_09, and connected by a 100 MBit/s switched Ethernet network.

We measured the time to do state transfer of state sizes between 0 and 200 MB for
replication groups using the static equal and the dynamic state transfer algorithm. As
the impact of parallel state transfer depends on the number of state providers, we varied
the group size from one to four state-providing nodes. In all experiments, we used a
fixed batch length of 10 and a block size of 16 kB. In order to compare our prototype
implementations with existing state-transfer protocols, we did the same measurements
with two state-transfer protocols provided by the JGroups group communication frame-
work. The first variant, implemented by JGroups version 2.3, supports a non-blocking
state transfer that requires the application to provide the state as a byte array that is
transferred to the joining node. The second variant has recently been made available in

176 R. Kapitza et al.

0 20 40 60 80 100 120 140 160 180 200
state size (MB)

0

2

4

6

8

10

12

14

16

18

20

22

24
tr

an
sf

er
 ti

m
e

(s
ec

on
ds

)

1 replica dynamic
1 replica static
2 replica dynamic
2 replica static
3 replica dynamic
3 replica static
4 replica dynamic
4 replica static
jgroups 2.5
jgroups 2.3

1 rd 1 rs 2 rd 2 rs 3 rd 3 rs 4 rd 4 rs jg 2.5

measurements at 100 MB state size

8

10

12

tr
an

sf
er

 ti
m

e
(s

ec
on

ds
)

Fig. 3. State transfer in a LAN environment

the preview version of the future JGroups 2.5. It offers an API similar to our prototype
and supports a blocking streaming state transfer.

Figure 3 shows the results of the measurement. The old state transfer protocol of
JGroups 2.3 is not suitable for transferring states larger than 50 MB. The JGroups 2.5
state transfer protocol implementations scales better, but is not as efficient as any of our
parallel state-transfer variants. The static equal parallel transfer produces very similar
results for any number of state providers. The dynamic transfer offers a slight speed-up
with 2 and 3 state providers, compared to only a single one. However, the performance
drops back again with 4 providers. We assume that this is due to a network saturation at
the link to the target and the overhead for sending requests to an increasing number of
state providers.

All streaming state transfer variants produced good results that are close to each
other. The dynamic variant performed slightly better than the static one, but the dif-
ference is very small. This matches our expectations, as a static equal distribution
of state-transfer tasks on all nodes should be well-suited for the given homogeneous
environment.

In practice, a LAN or cluster environment often is not dedicated to a single appli-
cation. Thus, in a second experiment we evaluated the impact of CPU load at one of
the state providing replicas. We implemented a simple load generator to produce a pre-
dictable and reproducible load. During the whole experiment, the selected node had a
system CPU load between 2 and 3. We chose a group size of three replicas and a fourth
node that joins the group. Again, we increased the state size from 0 to 200 MB in steps
of 10 MB.

Parallel State Transfer in Object Replication Systems 177

Figure 4 shows the strong impact on the state streaming Jgroups implementation. The
state transfer time roughly doubles in comparison to an unloaded system. Both the dy-
namic and the static implementation perform better, as the state transfer is split among
all state-providing replicas. The dynamic variant in general outperforms JGroups 2.5
and static equal state transfer.

0 20 40 60 80 100 120 140 160 180 200
state size (MB)

0

5

10

15

20

25

30

35

40

45

50

tr
an

sf
er

 ti
m

e
(s

ec
on

ds
)

dynamic
static
jgroups 2.5

Fig. 4. State transfer in a LAN environment with load injection

In summary, the two experiments have shown that the introduction of parallel down-
load techniques accelerates the transfer of large application states. While the benefit
is only small in an idle environment, a significant speed-up is obtained in an environ-
ment with high CPU load. In both cases, the proposed dynamic state transfer algorithm
outperforms the streaming state transfer offered by JGroups 2.5 and the parallel static
equal algorithm.

4.3 State Transfer in a Heterogeneous WAN Environment

For evaluating the proposed techniques in a heterogeneous WAN environment, we
chose a set of four different nodes. Two nodes are located in the same sub-network at
the FAU Erlangen-Nuernberg, a third node faui00a is located in a different sub-network
also at the campus of the FAU. Finally the fourth node schirk is located more distant at
Ulm University.

In the experiment we set up a group of three replicas and let the fourth node join the
group. We chose two scenarios: One time one of the machines at FAU faui00a joined
the group and another time schirk the node located at Ulm University entered the group
(cf. Figure 5).

178 R. Kapitza et al.

Again the state transfer protocol of JGroups 2.3 did not scale and had memory prob-
lems especially when the distant node joined the group. The JGroups 2.5 protocol pro-
duced better results than the implementation of JGroups 2.3 and, as expected, requires
more time for state transfer if the node at Ulm University joins the group. The transfer
values of static equal are very close together, independent of the location of the join-
ing node. Static equal is in general better than JGroups 2.5 if the distant node joins the
group, but slower if the joining node is located at FAU. This is to be expected, as sta-
tic equal waits for the slowest node to start another round. The dynamic parallel state
transfer performs best regardless of the location of the joining node.

0 10 20 30 40 50 60 70 80 90 100
state size (MB)

0

5

10

15

20

25

30

tr
an

sf
er

 ti
m

e
(s

ec
on

ds
)

jgroups 2.3 - schirk
jgroups 2.3 - faui00a
jgroups 2.5 - faui00a
jgroups 2.5 - schirk
static equal - faui00a
static equal - schirk
dynamic - faui00a
dynamic - schirk

Fig. 5. State transfer in a WAN environment

4.4 Non-blocking State Transfer

This experiment does not target the reduction of the state transfer time, but instead
evaluates the reduction of service unavailability caused by a state transfer.

We set up a replication group of two nodes. One node sending probe message every
100 ms to all group members. Every node that receives a probe message immediately
replies to the probe and the sender records the round-trip time. Again we let a third node
repeatedly join the group and raised step-wise the state size from 0 to 200 MB. During
this process the joining replica recorded the time to acquire the state and the providing
nodes logged the time to hand over the state to the group-communication framework.
As Figure 6 details by the strong red and black lines, far less time is required to provide
the state to the framework than to transfer the whole state. This is achieved as the state
is temporarily saved on disk. Directly after the state provision, the application is able to
respond to requests, as the second set of curves shows.

Parallel State Transfer in Object Replication Systems 179

0 50 100 150 200
state transfer time (MB)

0

2

4

6

8

10

12

14

16

18

20

bl
oc

ki
ng

 ti
m

e
&

 m
es

sa
ge

 r
ou

nd
-t

ri
p

tim
e

(s
ec

on
ds

)
state providing node
state requesting node

Fig. 6. The impact of a non-blocking state transfer on blocking time and message delay

5 Conclusions

This paper has presented and evaluated concepts for parallel state transfer in object
replication systems. First, this paper presented and evaluated the implementation of
parallel state transfer in an object replication system. While parallel download has pre-
viously been used with success in client-server systems as well as in decentralised peer-
to-peer systems, it is currently not used in general infrastructures for object replication.
Second, we have defined parallel state-transfer algorithms that work with an object state
of unknown a priori size. In our application domain, the size of the serialised state of the
replicas is usually unknown; this differs from the situation in other parallel download
scenarios, in which files of known size are transferred. Third, we have presented partial
state capturing as a technique that enables efficient non-blocking parallel transfer of
large application states by generating only a partial state copy on disk.

An experimental evaluation has given important information about which state-
transfer strategies are most important, depending on the size of the application state
and the distribution of the system. We have particaluary shown that a dynamic parallel
transfer enables a highly efficient state transfer. Besides minimising transfer time, our
approach also minimises the time that replicas are unavailable because of suspension
during state transfer.

References

1. Peña Cabañas, L., Pavón Mestras, J.: PODDP 2000 and DDEP 2000. LNCS, vol. 2023.
Springer, Heidelberg (2000)

2. Parrington, G.D., Shrivastava, S.K., Wheater, S.M., Little, M.C.: The Design and Implemen-
tation of Arjuna. Computing Systems 8(2), 255–308 (1995)

3. Maffeis, S.: Adding Group Communication and Fault-Tolerance to CORBA. In: Proc. of the
Conf. on Object-Oriented Technologies (Monterey, CA) USENIX, pp. 135–146 (1995)

180 R. Kapitza et al.

4. Malloth, C.P.: Conception and implementation of a toolkit for building fault-tolerant distrib-
uted applications in large scale networks. PhD thesis, EPFL (1996)

5. Birman, K.: Building secure and reliable network applications. Manning Publications Co.,
Greenwich (1997)

6. Ban, B.: Design and implementation of a reliable group communication toolkit for Java.
Technical report, Dept. of Computer Science, Cornell University (1998)

7. Narasimhan, P., Moser, L., Melliar-Smith, P.M.: State Synchronization and Recovery for
Strongly Consistent Replicated CORBA Objects. In: DSN, pp. 261–270 (2001)

8. Mishra, S., Peterson, L., Schlichting, R.: Consul: a communication substrate for fault-tolerant
distributed programs. Distributed Systems Engineering 1(2), 87–103 (1993)

9. Castro, M.: Practical Byzantine Fault Tolerance. Ph.D., MIT, January 2001, Also as Technical
Report MIT-LCS-TR-817 (2001)

10. Kemme, B., Bartoli, A., Babaoglu, Ö.: Online Reconfiguration in Replicated Databases
Based on Group Communication. In: DSN ’01. Proc. of the 2001 Int. Conf. on Depend-
able Systems and Networks, pp. 117–130. IEEE Computer Society Press, Washington, DC,
USA (2001)

11. Jiménez-Peris, R., Patiño-Martínez, M., Alonso, G.: Non-Intrusive, Parallel Recovery of
Replicated Data. In: SRDS ’02. Proc. of the 21st IEEE Symp. on Reliable Distributed Sys-
tems (SRDS’02), p. 150. IEEE Computer Society Press, Washington, DC, USA (2002)

12. Rodriguez, P., Kirpal, A., Biersack, E.W.: Parallel-access for mirror sites in the Internet. In:
INFOCOM 2000. Nineteenth Annual Joint Conf. of the IEEE Computer and Communica-
tions Societies. Proc. IEEE, vol. 2, pp. 864–873 (2000)

13. Rodriguez, P., Biersack, E.W.: Dynamic parallel access to replicated content in the internet.
IEEE/ACM Trans. Netw. 10(4), 455–465 (2002)

14. Vazhkudai, S.: Distributed Downloads of Bulk, Replicated Grid Data. J. Grid Comput. 2(1),
31–42 (2004)

15. Xu, Z., Xianliang, L., Mengshu, H., Chuan, Z.: A speed-based adaptive dynamic parallel
downloading technique. SIGOPS Oper. Syst. Rev. 39(1), 63–69 (2005)

16. Gkantsidis, C., Ammar, M., Zegura, E.: On the Effect of Large-Scale Deployment of Parallel
Downloading. In: WIAPP ’03. Proc. of the The Third IEEE Workshop on Internet Applica-
tions, pp. 79–89. IEEE Computer Society Press, Washington, DC, USA (2003)

17. Reiser, H.P., Kapitza, R., Domaschka, J., Hauck, F.J.: Fault-tolerant replication based on
fragmented objects. In: Proc. of the 6th IFIP Int. Conf. on Distributed Applications and In-
teroperable Systems (DAIS 2006) (2006)

MARS: An Agent-Based Recommender System

for the Semantic Web�

Salvatore Garruzzo, Domenico Rosaci, and Giuseppe M.L. Sarné

DIMET, Università Mediterranea di Reggio Calabria
Via Graziella, Località Feo di Vito

89122 Reggio Calabria, Italy
{salvatore.garruzzo, domenico.rosaci, sarne}@unirc.it

Abstract. Agent-based Web recommender systems are applications ca-
pable to generate useful suggestions for visitors of Web sites. This task
is generally carried out by exploiting the interaction between two agents,
one that supports the human user and the other that manages the Web
site. However, in the case of large agent communities and in presence
of a high number of Web sites these tasks are often too heavy for the
agents, even more if they run on devices having limited resources. In
order to address this issue, we propose a new multi-agent architecture,
called MARS, where each user’s device is provided with a device agent,
that autonomously collects information about the local user’s behaviour.
A single profile agent, associated with the user, periodically collects such
information coming from the different user’s devices to construct a global
user profile. In order to generate recommendations, the recommender
agent autonomously pre-computes data provided by the profile agents.
This recommendation process is performed with the contribution of a site
agent which indicates the recommendations to device agents that visit
the Web site. This way, the site agent has the only task of suitably pre-
senting the site content. We performed an experimental campaign on real
data that shows the system works more effectively and more efficiently
than other well-known agent-based recommenders.

1 Introduction

An overwhelming amount of different recommender systems [5,9,10] has been
proposed in the last years to support users’ Web navigation. They can provide
users with useful suggestions, as the most promising pages to visit in a Web
site, the items that could meet the user’s interest in an E-commerce site, etc.
Generally, recommender systems are partitioned in: (i) Content-based, that rec-
ommend to a user the objects which appear similar to those he already accessed
in the past; (ii) Collaborative Filtering, that search similarities among users and
consequently suggest to a user some objects also considered by similar users in
the past; (iii) Hybrid, that use both content-based and collaborative filtering
� This work has been partially supported by the MIUR–“Italian Ministry of Education,

University and Research”, under the Research Project Quadrantis.

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 181–194, 2007.
c© IFIP International Federation for Information Processing 2007

182 S. Garruzzo, D. Rosaci, and G.M.L. Sarné

techniques to generate recommendations (e.g., a Web site can generate sugges-
tions considering user’s personal interests and user’s commonalities among other
known users). In these situations, hybrid recommender systems have been usu-
ally recognized as the most promising solution. Generally, these systems exploit
in their recommendation algorithms an internal representation (profile) of the
user. In order to construct such a user profile, many recommender systems pro-
posed the use of software agents. Specifically, each user is associated to a software
agent which monitors his Web activities. When the user accesses a Web site, his
agent exploits the profile interacting with the site (e.g., through another software
agent associated with the Web site). Finally, the site can use both content-based
and collaborative filtering techniques to provide recommendations to the user
agent by adapting the site presentation. In this scenario, an emerging issue is
that nowadays users navigate on the Web using different devices as desktop
PCs, cellular phones, palmtops, etc. Each of these devices presents: (i) its own
interface characteristics (e.g., display capability), (ii) a different cost of Internet
connection, (iii) different storage space and computational capability. These dif-
ferences can influence the user’s preferences; for example, when he accesses to a
site with a cellular phone, he could desire a light site presentation. Consequently,
we suppose that, for each user, there should be constructed a different profile for
all the devices he uses. Furthermore, the issue (iii) leads us to argue that a user
should be provided with a different and suitable agent for each device typology
he exploits. Moreover, since the user’s interests change with the exploited device
also the recommender system should be adaptive with respect to the device [1,7].

We have recently proposed [8] an agent-based recommender system, called
Multi Agent System Handling Adaptivity (MASHA), that tackles this impor-
tant issue. MASHA provides each device with an autonomous client agent to
collect into a local profile the information about the user’s behaviour associated
to just that device. This local profile is continuously updated by a server agent
that manages a global user profile that collects the information provided by the
different devices exploited by the user. The third component of this architecture,
called adapter agent, is capable to generate a personalized Web site represen-
tation. This representation contains some useful recommendations derived by
(i) an analysis of the user profile and (ii) the suggestions coming from other
users that exploit the same type of device. The main limitation of MASHA is
the significant computational cost of the adapter agent activities, due to the
execution of the recommendation algorithm. More in detail, let n be the number
of site visitors and m be the number of objects present in the site. The com-
putational complexity of the MASHA technique is O(m · n2) in the worst case,
since it compares the profile of each visitor with those of the other visitors and
considers up to m concepts for each visitor.

In this paper we present a Multi-Agent Recommender System (MARS) that
is an evolution of the MASHA architecture. The main contribution of this work
consists in proposing a new recommendation algorithm that takes into account
both the visitor profile and the exploited device, and presents a smaller compu-
tational cost with respect to MASHA. The MARS architecture (see Figure 1)

MARS: An Agent-Based Recommender System for the Semantic Web 183

Fig. 1. The MARS Architecture

maintains the three MASHA agent typologies: (i) device agent, associated with
each device, (ii) profile agent, associated with each user, and (iii) site agent,
associated with each Web site. Differently from MASHA, the recommendations
are not autonomously generated by the site agent, but they are the result of a
collaboration between the site agent and a new agent type, called recommender
agent. Indeed, the basic idea underlying MARS is that of partitioning the profile
agents in clusters of users having similar global profiles, where each cluster is
managed by a recommender agent. As a consequence, when a visitor accesses a
Web site, the associated site agent does not have to make any onerous task, but it
simply contacts the recommender agent that is associated with the cluster which
the user belongs to. Each recommender agent r internally stores the following
elements: (i) the profiles of the agents that belong to the partition of r; (ii) the
catalogue of the objects of each site that has interacted in the past with r; (iii)
the profiles of the past visitors of the site. Each of this profiles, associated with
a past visitor v, collects the objects of the site that has been considered inter-
esting by v. A significant advantage of this approach, is that a site agent that is
contacted by n visitors, delegates the task of generating both content-based and
collaborative filtering recommendations to the associated recommender agents.
This way, the computational cost on the site agent side is O(m·p) (where p is the
number of different clusters) that results significantly lower than MASHA. Dif-
ferently from other recommender systems [3,6,11], MARS presents three original
characteristics, namely:

1. In order to construct the global user profile, it takes into account the different
devices exploited by the user.

2. It generates the recommendations using the collaboration of the recom-
mender agent, that runs on a server machine and pre-computes most of
the necessary data. This way, the task of the site agent becomes very light.

184 S. Garruzzo, D. Rosaci, and G.M.L. Sarné

3. It simplifies the task of the device agent, which does not perform neither the
construction of the whole user’s profile and the generation of the recommen-
dations. Indeed, the user’s profile is constructed by the more powerful profile
agent running on a server machine, and the recommendations are generated
by the site agent in conjunction with the recommender agent.

These characteristics make MARS more effective and more efficient when gen-
erating recommendations with respect to other systems, especially in presence
of very large agent communities. We have experimentally evaluated MARS by
comparing it with other recent profile-based recommender system approaches,
and observing a significative improvements of the recommendation performances.
The plan of the paper is as follows. In Section 2 we provide an overview of the
MARS architecture; Related work is examined in Section 3; some experiments
are presented in Section 4. Finally, in Section 5, some conclusions are drawn.

2 MARS Architecture

In this section we describe the MARS architecture that supports (i) the user in
his Web navigation by generating personalized suggestions and (ii) the site man-
ager to generate a site presentation in a format suitable for the device currently
exploited by the user. To these purposes MARS exploits a suitable user profile.
In order to define the notion of user profile, we have to preliminarily introduce
the notion of agent ontology. We mean as agent ontology a dictionary of the
terms used by the agents of the multi-agent system when interacting with each
other. We call concept a term of an ontology. Here we assume that all the agents
in MARS uses the same common ontology and consequently share the same con-
cepts. Moreover, we also assume that all the objects present in the Web sites
of MARS can be described by using the concepts of the common ontology. For
instance, if an e-commerce site contains a given product (e.g. the book “Anna
Karenina”), this product can be considered as an instance of the concept book
(supposing that this concept is contained in the ontology). Therefore, when in
some cases along this paper we say that a Web site contains concept instances,
we mean that it contains actual objects. Differently, when we refer to concepts of
a Web site, we deal with the concepts of the common ontology which the objects
of the site belong to. For each concept of a given Web site visited by the user,
the profile stores a value that represents the time spent on the instances of that
concept. This time value is considered as a rough measure of the user’s interest
about the concept and it is strictly related to the characteristics of the exploited
device. MARS uses four types of agents, described in detail below. As shown in
Figure 1, each user’s device is associated with a device agent that monitors the
user and builds a local user profile. Then, each user is associated with a profile
agent, running on a server machine, that constructs a complete profile of the
user’s interests. To this purpose, the profile agent collects the local profiles pro-
vided by the different device agents. Profile agents associated to different users,
are grouped in partitions, each of them characterized by a specific domain of

MARS: An Agent-Based Recommender System for the Semantic Web 185

interest (e.g. sport, travels, etc.). Each profile agent can belong to different par-
titions if its associated user is interested in different domains. In its turn, each
partition is associated with a recommender agent that runs on a server machine
and that is able of determining similarities between the agents of the partition.
Furthermore, for each Web site of the MARS community, a recommender agent
contains a complete list of the concepts of the site and, for each agent of the
associated partition, a list of the concepts of the site accessed by that agent.
These information are provided by a site agent associated to each Web site.

The recommender system works as follows. When the user U accesses a Web
site W , the device agent of U interacts with the site agent of W and sends to
it some information about the U ’s preferences. These preferences are relative to
the presentation format desired by U when exploiting that device. Next, the site
agent contacts the recommender agents of the partitions which U belongs to.
These recommender agents pre-computed the concept instances of the site that
best match with the device profile of U , to support content-based recommenda-
tions. Moreover, recommender agents also pre-computed the concept instances
accessed by other users similar to U and that exploit the same device of U , to
support information filtering recommendations. Then, these concept instances
are transmitted to the site agent of W that generates recommendations for U
with a suitable site presentation.

Note that the common ontology O exploited in MARS is realized as an XML-
Schema document, where each element represents a concept. We suppose that
all sites are XML sites that contains instances of concepts that belong to O. We
also suppose that each Web page contains some hyperlinks represented by pairs
(s, d), where s and d are instances of concepts. A hyperlink (s, d) in a page p can
be clicked by a user that is visiting p, and the click leads to another page that
visualizes d.

2.1 The Device Agent

We associate a device agent DAi with each device Di exploited by the user
U . During a Web session, the device agent stores some device information and
locally updates the user’s profile based on the visited concepts. We describe
below both the data structure and the behaviour of the device agent.

Device Data Structure. The data structure of DAi can be described by two
data structures, namely the Device Setting (DSi) and the User Profile (UPi).
DSi contains the following parameters:

– RIDSet, that is the set of recommender agents associated to the partitions
which U belongs to;

– MSSet, that is the Maximum Size Set, containing three parameters that
represent the maximum sizes (in Kbyte) of text, audio and video contents
that U desires to handle when using Di;

186 S. Garruzzo, D. Rosaci, and G.M.L. Sarné

– ρ1, ρ2, ρ3 ∈ [0, 1], associated to the actions performable by U (i.e., visiting,
storing or printing a Web page);

– T , that is an integer coefficient used to evaluate the U ’s interest in a concept
instance;

– P is the attenuation period expressed by the number of days between two
consecutive U ’s actions after which the interest for an unvisited concept
decreases;

– ψ, that is a function used to decrease each P days the U ’s interests relative
to the associated concepts that are no longer accessed;

– k, z and r, that are parameters exploited by DAi in its interaction with
the site agent of each visited site (see Section 2.3). In particular, k, z and
r respectively represent the number of: (i) interesting concepts belonging
to the visited site that U desires to be considered in the site presentation;
(ii) similar agents that U desires to be considered in collaborative filtering
recommendations; (iii) recommendations to be considered for each similar
agent.

UPi stores the profile of U , based on the whole navigation history and updated
on the basis of the hyperlinks that U clicked when exploiting Di. More in detail,
UPi is a set of tuples 〈c, IRi, LUi〉, each one associated with a concept c ∈ O,
where IRi (Interest Rate) is a measure of the U ’s interest in c by using Di

and LUi (Last Update) is the date of the last IRi update. Analogously to the
approaches [3,6], in order to set a coefficient, belonging to the interval [0, 1], that
reaches the maximum value when t > T , we define the measure of interest in
c by using the actual time t spent by U when visiting the page containing c.
Moreover, U can store, print or simply read the Web page that contains c, and
this is taken into account by weighting IRi with a coefficient ρa for each action
a (where a = 1, 2, 3). More formally, for each new update, IRi is computed as
follows:

IRi =
{

(IRi + t
T × ρa)/2 , if t ≤ T

(IRi + ρa)/2 , elsewhere

In other words, IRi is computed as the mean value between the previous value
of IRi and the current value t

T × ρa, where the ratio t
T is fixed to 1 if t > T .

Besides, the function ψ is periodically used to decrease the interest rate of the
unvisited concepts, based on the temporal distance from the last update.

Device Agent Behaviour. DAi supports U as follows: (i) in order to construct
UPi, DAi monitors U ’s Web navigation sessions considering the concepts visited
by U and his behaviour when accessing them (note that accessed concepts not yet
occurring in UPi require new elements to add into UPi). DAi periodically sends
UPi to its profile agent. (ii) When U visits a Web site, DAi sends to the site
agent the parameters relative to the exploited device to generate a personalized
presentation of the Web site for U . (iii) In order to take in account the “age” of
the interest rate, each P days DAi updates the interest rate coefficient (IRi =
ψ(IRi, LUi)) associated to each concept c .

MARS: An Agent-Based Recommender System for the Semantic Web 187

2.2 The Profile Agent

Each user U is associated with a profile agent (PA) that collects by each U ’s
device agent the information about the concepts visited during U ’s Web activi-
ties. These information are sent to the recommender agents of the U ’s partitions.
This is an important feature of MARS, since the device agents live on the asso-
ciated devices and could have limited computation and storage capability. The
contribution of PA, which runs on a more equipped machine, is fundamental
to provide U with an off-line collector of all the information obtained by the
different device agents that monitored the U ’s navigation. Below, both the data
structure and the behaviour of PA are described.

Profile Data Structure. The data structure of PA contains two elements,
namely the Profile Setting (PS) and Global User Profile (GUP). In its turn, PS
stores the following parameters:

– n is the number of device agents associated to PA;
– m is the number of parameters necessary to compute the global interest rates

of the various concepts (see below);
– PM is a matrix having n rows and m columns, where each element PMij is

the j-th parameter associated to the i-th device. This matrix is necessary to
compute the contribution of DAi to the computation of the global interest of
a concept (see below). It is possible to use as PMij parameter several char-
acteristics of the Di connection, for instance the price per byte transmitted,
the exploited bandwidth etc.;

– f is a function that accepts as input a PM row and computes as output the
contribute of DAi to the global interest of a concept.

The Global User Profile (GUP) stores a global representation of U ’s interests
relative to the concepts visited in his whole navigation when exploiting his de-
vices. It is represented by a pair (IR, GC), where IR is a list of pairs (c, IRi)
such that c is a concept and IRi is its interest rate computed by DAi. GC is
described by a tuple of the form 〈c, GIR〉, where c identifies a concept visited by
U and GIR is its Global Interest Rate shown by U . GIR is the weighted mean
of all the interest rates for the concept c. Each weight of IRi is evaluated by the
weighting function f by using as input parameters the i-th row of the matrix
PM . That is:

GIR =
∑n

i=1 f(PMi,1, PMi,2, .., PMi,m) × IRi∑n
i=1 f(PMi,1, PMi,2, .., PMi,m)

Profile Agent Behaviour. The behaviour of PA consists in updating GUP by
exploiting the data that each U ’s device agent periodically sends to PA. These
data consist, for each concept c visited by U with the device Di, of a pair of
the form 〈c, IRi〉. If c also occurs in the GUP , IRi is stored in IR and it is
immediately exploited to update GIR; elsewhere, if c is a new concept, for the
first time visited by the user, a new element is added both in IR and in the set
of the global coefficients GC.

188 S. Garruzzo, D. Rosaci, and G.M.L. Sarné

2.3 The Recommender Agent and the Site Agent

Two other types of MARS agents are the recommender agent (RA) and the site
agent (SA). Each RA is associated with a set of users that are interested in the
same domain. We denote by n the number of users associated with RA. Each
SA is associated with a Web site in order to manage the site content.

Below, the data structure of RA and the behaviours of recommender and site
agents, that interact together, will be briefly described. We omit to describe the
structure of the site agent since it contains only the site catalogue.

Recommender Data Structure. The data structure of RA is composed of
three elements called Site Catalogues (SG), Global Profile Set (GPS) and Profile
Collector (PC). SG contains, for each site W that interacted with RA in the
past, a copy of the catalogue CW that stores all the concept instances present in
W . Each catalogue CW is periodically updated by the corresponding site agent
of W . GPS contains the global profiles of all the users associated to RA. The
Profile Collector PC contains several data sections, each one relative to a site
W of the MARS community and denoted by DSW . In its turn, DSW contains
a list PSetW containing the profiles associated to the nW past visitors of W .
We denote by Pq,i each of these profiles, associated to a given user q and his
device i. In particular, Pq,i is described by the pair (DPi, L) that contains both
the device profile DPi and a list L. The elements of L are pairs (c, IR) where c
is a concept instance, that q considers interesting in W , and IR is the interest
rate of the associated concept. Note that Pq,i denotes the profile of a visitor q
using a specific device, and not his global profile. Both the information DPi and
L of each visitor profile Pq,i are provided to RA by the site agent of W when q
terminates its visit.

Recommender and Site Agent Behaviours. Each Web site W is associated
with a site agent SA. Suppose that the user U visits S by exploiting a device
Di; then the device agent of U sends to the site agent SA the device profile
DPi. Moreover, suppose that U ’s profile belongs to a partition associated to the
recommender agent RA. In this case, SA contacts RA, that has pre-computed
personalized recommendations for U , and sends to RA the device profile DPi

of the device Di. In order to generate content-based recommendations, RA has
built a list CB that contains those concept instances of W whose concepts belong
to the global profile of U (this global profile is contained in the Global Profile Set
of RA). Then, RA orders CB in a decreasing fashion based on the coefficient IR
of each concept and maintains only the first k concepts deleting the remaining
ones. Remember that k is a parameter contained in the Device Profile DPi.
Moreover, in order to generate collaborative filtering recommendations, RAj

compares the device profile PU,i contained in the data section DSW , with each
profile Pq,i ∈ PSETW of each other user q, that has visited W in the past
and that has exploited the same device. As a result, a list CF of the concepts
accessed by the z visitors mostly similar to U is obtained. Remember that also
z is a parameter contained in DPi. The similarity between PU,i and that of

MARS: An Agent-Based Recommender System for the Semantic Web 189

another agent considered in PC is computed as the sum of all the contributions
(1 − dj), with j = 1, .., l, where dj is the difference, in absolute value, between
the l instance rates of each concept common to both U and the other agent.

3 Related Work

Many recommender systems using software agents have been proposed in the
last years. Below we present a qualitative comparison between some well-known
agent-based recommender systems and MARS, pointing out differences and sim-
ilarities. Other quantitative comparisons will be presented in the next section.

SUGGEST [11] supports user Web navigation dynamically generating links to
pages (also belonging to dynamic Web sites) that are unvisited by a user and
potentially interesting for him. In order to carry out its task, SUGGEST builds
and maintains historical information about the user behaviour by means of an
incremental graph partitioning algorithm. Navigational patterns information are
extracted by SUGGEST modelling them as a complete graph G = (V, E). The
set V of vertices contains the identifiers of the different pages hosted on the Web
server. The set of edges E is weighted by the relation: Wij = Nij/max{Ni, Nj},
where Ni, Nj and Nij are the numbers of sessions (each one identified by the
cookies stored on the client side) containing the page i, j or both, respectively.
In order to find groups of strongly correlated pages, G is partitioned using a
clustering algorithm, and a suggestion list is constructed in a straightforward
manner, by finding the cluster which has the largest intersection with the page
window correspondent to the current session.

C-Graph [2] proposes an agent model to support a Web user navigation, mon-
itoring his behaviour and learning his preferences, to provide him with a set of
recommendations. The user knowledge is modelled into an ontology as a rooted
labelled direct graph 〈N, A〉, where: N is the set of nodes representing the set of
concepts of interest for the user U ; A, with A ⊆ N ×N , is the set of arcs encod-
ing semantic relationships among concepts perceived by U , where the associated
arc labels define a number of properties linked to the relationships containing
also the model dependency by U . More precisely, an arc (s, t) is provided with a
label(s, t) = 〈dst, rst, hst, τst〉, where dst, rst ∈ [0, 1], hst is a non negative integer
and τst is a real number. The four label coefficients above are related to differ-
ent properties computable by analyzing the visited documents and expressing
some kind of relationships among concepts. The approach defines two functions
ψ and ρ encoding the structural closeness and the user preferences, respectively.
In order to summarize both structural and behavioural components, a function
γ is defined to measure the “subjective” semantic closeness of two concepts. The
user can set, in computing the semantic closeness, the degree of importance he
gives to the structural preference with respect to the behavioural one, by set-
ting an internal parameter k. More in detail, the semantic closeness between two
concepts s and t is γ(s, t) = k × ψ(s, t) + (1 − k) × ρ(s, t).

190 S. Garruzzo, D. Rosaci, and G.M.L. Sarné

X-Compass [3] is an XML-based agent model that supports a user U in his Web
activities by monitoring the behaviour in the Web pages access to automatically
construct and manage an his profile. X-Compass exploits such profiles to provide
content-based and collaborative filtering recommendations, as an example, the
next page to visit. In particular, each user U is supported by an agent Ag(U)
having the following data structures: (i) a user profile P (U) that stores U ’s
interests and two relationships existing among them in a rooted graph, in which
each node represents a concept of interest for U and has associated an attraction
degree DAttr and a key set KSet of the semantics of the interest relative to that
node; while each P (U) arc represents both is-a relationships and associative
rules, extracted by using data mining techniques (namely: is-a relationships,
organize such interests in a generalization hierarchy; associative relationships,
link U ’s interests appearing distant in the is-a hierarchy but closed from the
analysis of the user behaviour); (ii) a list history H(U) of elements, each one
associated with a Web page access performed by U , ordered on the basis of the
temporal access; (iii) an aggregated history AH(U), that is a list of elements,
each one representing the whole past U ’s history in visiting the associated Web
page. During each Web session, Ag(U) monitors each U access to a Web page
to: extract the necessary information, and to update H , AH and DAttr of the
node representative of the currently visited page.

CBCF [4] (Content-Boosted Collaborative Filtering) uses a content-based pre-
dictor to enhance existing user data, to exploit collaborative filtering to generate
personalized suggestions. The content-based approach views content information
as text documents, and user ratings as one of six class labels. The collaborative
filtering component uses a neighborhood-based algorithm, where a subset of
users similar to the active users, and a weighted combination of their ratings is
exploited to generate recommendations for the active user.

Similarities and differences with MARS Similarly to MARS, all the afore-
mentioned systems exploits an internal profile to store information relative to
the user. The main difference with MARS is that such a profile is stored in
a unique agent that supports the user and manages his profile. Differently, in
MARS the profile is managed by the profile agent and is built on the basis
of the information provided by the device agents associated with the different
user’s devices. As a result, the device agents only collects information about
the user, while the profile construction is performed by the profile agent. More-
over, in MARS recommendations are not generated by the only site agent, but
they are the result of a collaboration between the site agent and the recom-
mender agent that pre-computes most of the necessary data. This way, the
task of the site agent becomes very light. Finally, none of the above described
systems considers the effect of using different devices in the profile construc-
tion and, consequently, in the recommendation algorithm. Instead, MARS uses
this information providing personalized content-based and collaborative filtering
recommendations.

MARS: An Agent-Based Recommender System for the Semantic Web 191

4 Experiments

In this section, we present some experiments devoted to evaluate the capability
of MARS to perform both content-based and collaborative filtering activities by
compare its performances in generating suggestions with all the systems pre-
viously described. We have chosen X-COMPASS, C-GRAPH and CBCF since
they are, similarly to MARS, both content-based and collaborative filtering and
exploit a user profile. They are, at the best of our knowledge, three of the most
performative recommender systems. Moreover, to analyze separately the contri-
bution of the content-based and the collaborative filtering algorithms, we have
chosen also the content-based system SUGGEST, that is one of the most per-
formative in this context. For our experiments, we have built 30 different XML
Web sites by using a common ontology represented by a unique XML Schema;
therefore each page has only instances of this XML schema. Furthermore, we
have monitored 97 real users in their Web sites navigation, without using any
recommendation support. For each user, a log file has recorded his choices in
a list of 700 elements 〈s, d, t〉, relative to 700 different clicks performed by him
during 15 days, where s (resp. d) is the identifier of the source (resp. destination)
concept instance, and t is the time of his choice to go from s to d via a hyperlink.

We have also realized eight different types of device agents, developed by using
JADE (Java Agent Development Framework) and JADE/LEAP (JADE Light-
weight Extensible Agent Platform) for devices, as palmtop and cellular phones,
with limited resources. Four of these agent types are MARS agents (namely
device, profile, site and recommender agents) that implement our approach of
generating user suggestions. The other four agent types are client agents built by
following the recommendation-based approaches called SUGGEST, C-GRAPH,
X-COMPASS and CBCF, that we have presented in Section 3 and that we com-
pare in this section with our approach.

MARS Device Agents. We have three device agents associated with three
different devices, namely a desktop PC, a palmtop and a cellular phone. We have
set their parameters (described in Section 2.1) as shown in Table 1. However, we
remember that the interest for a concept has been assumed as “saturated” if the
visit time of the concept is higher than T seconds. While, the coefficient ρ1 (resp.
ρ2, ρ3) weights the user’s interest in a concept in the case the user simply visits
(resp. stores, prints) a page containing an instance of that concept. Moreover,
the attenuation period P is equal to 3 for each device agent; this means that
the interest for a concept that has not been visited for three consecutive days
is decreased by using the coefficient ψ ∈ [0, 1]. Finally, for each client agent the
parameter k is equal to 4, thus showing to the user all the instances of the four
most interesting concepts.

Other Client Agents. The SUGGEST, C-GRAPH, CBCF and X-COMPASS
device agents are built by following the descriptions of the relative data struc-
tures and recommendations algorithms proposed in [2,3,4,11], respectively. In
particular, relatively to the C-GRAPH agent, we have used a coefficient k = 0.5
to give the same importance to both the structural and semantics closeness.

192 S. Garruzzo, D. Rosaci, and G.M.L. Sarné

Table 1. The setting of the MARS device agents

device agent T (sec.) ρ1 ρ2 ρ3 P ψ k

desktop PC 200 0.6 0.8 0.9 3 0.90 4
palmtop 120 0.6 0.9 1.0 3 0.95 4
cellular phone 60 0.5 0.9 1.0 3 0.95 4

MARS Profile Agents. Each user is associated with a profile agent. All the
profile agents adopt the same parameters values: (i) n = 3, having only three
types of device agents for each user. (ii) m = 1, since we have decided to use,
as unique parameter to weight the contribution of the interest rate coming from
each client agent, the price per Mega Byte (estimated for each adopted device
typology). In this case, the matrix PM becomes a vector [PM1, PM2, PM3]. The
prices per Mbyte (in euro cents) that we have considered are: PM1 = 0.9, PM2 =
1.4, PM3 = 1.8. (iii) We use the identity function f(PMi) = PMi as weighting
function. Thus the formula for computing the global interest rate GIR is:

GIR =
∑3

i=1 PMi × IRi∑3
i=1 PMi

4.1 Description of the Experiments

In our experiments we monitored the users in their Web visits. We denote with a
triplet (s, d, t) the transition of the user, that visits the instance s of the concept
cs, to the instance d of the concept cd at time t. Initially, in order to allow the
users’ agents to build their user profiles, for each user we have collected the first
450 triplet (s, d, t) as training-set. Other 300 triplet have been used as test-set
to evaluate the recommendation algorithm used by the site agent. That is, for
each user, in correspondence of each triplet (s, d, t) belonging to the test-set, we
have generated a recommendation R(s), for each of the five algorithms MARS,
X-COMPASS, C-GRAPH, CBCF and SUGGEST. Each recommendation R(s)
is a list of recommended concept instances. We have checked if d belongs to
R(s) in order to measure the effectiveness of the different approaches and we

have stored the result in a value c(s). Formally cs =
{

1 , if d ∈ R(s)
0 , otherwise

The average precision Pre of each recommender method is defined as the
average of the c(s) values on all the triplets (s, d, t).

The first row of Table 2 presents the results obtained in this experiment com-
paring the five approaches. In terms of Average Precision MARS has resulted
the best of the other approaches chosen for the comparison (the CBCF in all the
occurrences), measuring about a 21, a 48 and a 35 percent better than CBCF,
respectively. We argue that this very good performance that MARS obtains as
recommender systems, than the other considered approaches, it is due to the
fact that MARS considers, in determining its suggestions, also the devices ex-
ploited by the user. To confirm such an influence, we have repeated the above

MARS: An Agent-Based Recommender System for the Semantic Web 193

Table 2. Performances of different recommendation algorithms

MARS X-COMPASS C-GRAPH CBCF SUGGEST

Global 0.270 (0.189) 0.183 0.178 0.198 0.148
Content Based 0.196 0.139 0.140 0.156 0.148
Collaborative Filtering 0.139 0.086 0.081 0.100 -

comparisons, by using the only PC MARS device agent (already used in the
previous experiment), instead of three different clients. In this way, the effect of
the different devices, exploited by the user in the past, is not taken in account
in the generation of the MARS recommendations. Result of this experiment
is shown in round parenthesis in Table 2. In this conditions, MARS approach
shows performances comparable with, but no higher than those of the other
approaches. This confirms that the main advantage of MARS is in the intro-
duction of different device agents associated to each devices exploited by the
user. To understand more precisely how such a device consideration improves
the recommendation performances, we have repeated the experiment consider-
ing separately the content-based and the collaborative filtering components of
the experiments. That is, we have generated the recommendations of MARS,
X-COMPASS, C-GRAPH, CBCF and SUGGEST only taking in account the
concepts deriving from the similarity between the visitor profile and the site
content, without considering the concepts suggested by the other users. Since
SUGGEST is only a content-based recommender, the suggestions so generated
are in this case the same than those of the previous experiments. The results
of this experiment are reported in the second row of Table 2 and show that
the performances of MARS is about a 26 percent higher than the best of the
other systems. This confirms the supposition that taking into account the device
exploited in accessing the concepts leads to model more precisely the user prefer-
ences, and this positively influences the suggestion performances. Furthermore,
we have repeated the experiments with only the three approaches that act also
as collaborative filtering methods, those concepts deriving from the suggestions
of the other users, without taking into account the content-based component.
The result of this latter experiment (reported in the third row of Table 2) shows
that the performances of MARS are in this case significantly improved (about 39
percent higher than the other three approaches). We argue that this is the effect
of having considered, in generating collaborative filtering recommendations for
a user, only those users that exploited his same device.

5 Conclusions

In this paper we have presented a recommender system architecture, called Multi-
Agent Recommender System (MARS), designed to generate recommendations on
the basis of both user profile and exploited device. More specifically, our system
is based on the following two ideas. The first is that a device agent monitors a
user that is exploiting a fixed device to build a light profile just for that device,

194 S. Garruzzo, D. Rosaci, and G.M.L. Sarné

while a profile agent constructs off-line a complete user profile. This leads to
make more simple the task of the device agent, that often has limited resources
and, on the other hand, to take into account the different exploited devices in
constructing the user profile. The second is that each group of agents interested
in the same domain is associated with a recommender agent. It computes off line
the similarity between these agents and recording the behaviours of the agents
in accessing the Web sites of the community, in order to support both content-
based and collaborative filtering recommendations. This leads to generate very
effective recommendations, taking into account also the exploited devices, and
leaving to the site agent the only task of generating the graphical presentation.
We have performed some experiments for evaluating the performances of our
systems, in comparison with other four agent-based recommender systems, and
the obtained results show a significative improvements of the suggestions. It
is worth to point out that, besides these performance improvements, the main
advantage of the system is, in our opinion, the particular lightness of both the
device agent and the site agent that make very efficient the navigation of the
agents through the Web sites.

References

1. Anderson, C.R., Domingos, P., Weld, D.S.: Adaptive web navigation for wireless
devices. In: 17th Int. Joint Conf. on Artificial Intelligence, pp. 879–884 (2001)

2. Buccafurri, F., Lax, G., Rosaci, D., Ursino, D.: A user behavior-based agent for
improving web usage. In: CoopIS/DOA/ODBASE, pp. 1168–1185 (2002)

3. Garruzzo, S., Modafferi, S., Rosaci, D., Ursino, D.: X-Compass: An XML Agent
for Supporting User Navigation on the Web. In: Andreasen, T., Motro, A., Chris-
tiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS (LNAI), vol. 2522, pp. 197–211.
Springer, Heidelberg (2002)

4. Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering
for improved recommendations. In: AAAI/IAAI, pp. 187–192 (2002)

5. Montaner, M., López, B., de la Rosa, J.L.: A taxonomy of recommender agents on
the internet. Artif. Intell. Rev. vol. 19(4) (2003)

6. Parsons, J., Ralph, P., Gallagher, K.: Using viewing time to infer user preference
in recommender systems. In: AAAI Workshop on Semantic Web Personalization,
San Jose, USA, pp. 52–64 (July 2004)

7. Peñalvo, F.J.G., Paternò, F., Gil, A.B.: An adaptive e-commerce system definition.
In: 2nd Int. Conf. on Adaptive Hypermedia and Adaptive Web-Based Systems

8. Rosaci, D., Sarné, G.M.L.: MASHA: A Multi Agent System Handling User and
Device Adaptivity of Web Sites. User Modeling and User-Adapted Interaction:
The Journal of Personalization Research, vol. 16(5)

9. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Analysis of recommendation
algorithms for e-commerce. In: 2nd ACM Conference on Electronic Commerce
(EC-00), Minneapolis, USA, October 2000, pp. 158–167. ACM Press, New York
(2000)

10. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications.
Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001)

11. Silvestri, F., Baraglia, R., Palmerini, P., Serranò, M.: On-line generation of sug-
gestions for web users. J. of Digital Information Management 2(2), 104–108 (2004)

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 195–209, 2007.
© IFIP International Federation for Information Processing 2007

An HTML Fragments Based Approach for Portlet
Interoperability

Jingyu Song, Jun Wei, and Shuchao Wan

Technology Center of Software Engineering
Institute of Software, Chinese Academy of Sciences

Beijing, 100080, P.R.China
{songjy, wj, wsc}@otcaix.iscas.ac.cn

Abstract. Presentation level integration now becomes an important and fast
growing trend in enterprise computing and portals are the mainstream to realize
it. However, there is not yet a definitive mechanism to achieve interoperability
between the basic components of a portal i.e. portlets, whereby HTML data
flows smoothly from one portlet to a neighboring one. This paper proposes an
HTML fragments based approach to achieve portlet interoperability. Fragments
are a block of HTML elements, which are generated by portlets and are used to
aggregate a portal page. We first construct a presentation component, which is
named as ShadowComponent, for each portlet involved in a portlet
interoperation using its fragments, then define a data flow process between
ShadowComponents using ECA rules, and finally drive such a process by
creating events to fulfill data flow between ShadowComponents. As the
fragments of a portlet are synchronized with their corresponding Shadow
Component, such a process enables the portlet interoperation. Experimental
results show that the proposed approach is effective in achieving portlet
interoperability in portals.

Keywords: Portal, Porlet Interoperability.

1 Introduction

Presentation level integration now becomes an important and fast growing trend in
enterprise computing [9] and portals are the mainstream to realize it. Portals enable
the aggregation of interactive interfaces of different applications as components on
the same web page [1]. Portlet is the basic component of a portal, which represents an
interactive web mini application and is deployed on a portal server [7].

A portal typically decorates the HTML fragment returned by a portlet with a title
and several buttons, such as minimize, maximize and edit etc., then aggregates all
fragments together into a portal page. Though such unconstrained aggregation is
useful since applications are simultaneously rendered in the same page and users see
comprehensive information in a more convenient way, further integration capability is
surely desired. Information contained in a portlet may be required as the input in other
portlets. The information has to be manually copied from source to target portlets.
Such manual interactions may lead to frustration, low productivity, and inevitable

196 J. Song, J. Wei, and S. Wan

mistakes. Therefore, an effective mechanism for portlet interoperation is needed.
Unfortunately, currently available standards such as JSR168[7] and WSRP[11]
support no further integration of portlets than being displayed on the same page.

This paper proposes an HTML fragments based approach to achieve portlet
interoperation in portals. Rather than resorting to back-end solutions, we support a
pure front-end approach. A presentation component, which is named as
ShadowComponent, is constructed for each portlet involved in an interoperation using
the fragments produced by the portlet. Then an interoperation process, which uses
ShadowComponents as its nodes, is defined using event-condition-action (ECA)
rules. An ECA rule defines when and how the input/output data of a
ShadowComponent are received from or sent to a shared data space. Because the
fragments are synchronized with their corresponding ShadowComponents, such a
process achieves the interoperation between portlets. As the approach is based on the
fragments generated by portlets only, there is no need of modifications for portlets to
take part in an interoperation.

The rest of this paper is organized as follows: Section 2 presents related work.
Section 3 defines the requirements concerning portlet interoperation in portals based
on a typical scenario first, and then analyzes the inefficiencies and drawbacks of the
approaches that implement interoperation at different layers of a portlet based on a
general portlet architecture and points out that using fragments to achieve portlet
interoperation is a more reasonable solution. Our approach is proposed and discussed
in detail in section 4, 5 and 6. A practical example is also discussed in section 6.
Finally conclusions and future work are given in section 7.

2 Related Works

A variety of mechanisms for portlet interoperation have been proposed, which can be
classified as application-based, datasource-based and annotation-based.

The application-based approach, which is proposed by JSR168[7], introduces the
notion of “portlet application” that allows distinct portlets to share a common piece of
information to achieve portlet interoperation. However, a portal normally frames
portlets from distinct portlet applications, which prevents the data from being
exchanged.

Both approaches presented by Roy-Chowdhury et al.[14] and Weinreich et al.[16]
can be classified as datasource-based since the authors propose the use of a custom
JSP tag library or XML descriptions to enable a portlet to be a data source. The target
portlet is defined in a WSDL file with a custom extension to describe the actions,
which can consume data transferred from other portlets. However, the description-
based approach may cause compatibility problem, as there is no agreement yet on
how to standardize this mechanism.

Diaz et al. propose an annotation-based portlet interoperation approach that
supports semantic data transfer[2]. In that approach, portlets are characterized by their
ontology. Then portlet fragments extend their markups with information about the
supported process. Portlet interoperability is achieved through the mapping of the
ontology concepts. However, this approach relies on the cooperation of the markup
producer who has to embed the underlying information structure into the fragments in

 An HTML Fragments Based Approach for Portlet Interoperability 197

Fig. 1. A scenario of portlet interoperation

the development phase. Moreover, the approach further requires that the operation
defined in the specification should be extended.

Furthermore, in many scenarios, a portal is used to integrate existing web-based
applications. An application may be integrated into a portal without modifications
because of maintenance, cost, or technical reasons. Therefore, a portlet interoperation
should also be achieved without modifications to the corresponding applications. In
such situations, though all above three approaches provide some kinds of mechanisms
to transfer data between portlets, the portlet may not use them because the portlets or
back-end applications were not designed and developed to be used in an
interoperation context, which makes interoperation hard to be achieved.

3 Problem Statement and Analysis

3.1 A Scenario

We use the following scenario to analyze portlet interoperation requirements.
Consider a marketing department of a motor corporation. Three are three applications
developed and deployed: Order Management System(OM), Customer Relationship
Management System(CRM) and Business Intelligence System(BI). Each application
has been wrapped into a portlet, OMPortlet, CRMPortlet and BIPortlet respectively
using the method proposed in [3].

To analyze the market situation of cars and to find out the potential customers, the
marketing manager built a Market Analysis portal page containing the above three
portlets. The marketing manager has to interact individually with each portlet on the
page and key in data manually. For example, to get the customer details of an order,
the manager must copy the CustomerID of specified order from the OMPortlet to the
CRMPortlet’s entry textbox, and submit the query by clicking on the “Submit”
button. If the manager needs further to do a data mining to find out the sale status of
such a car model in the community with the same occupation as the customer in this
month, he/she has to copy the ProductID, Date from OMPortlet and Occupation from
CRMPortlet to BIPortlet’s corresponding entry textbox again. As shown in Fig.1, the
whole process is very fussy and error prone, which affects the fluency of analysis
process greatly.

According to the IEEE
Standard Computer Dic-
tionary, interoperability
means “the ability of two
or more systems or
components to exchange
information and to use the
information that has been
exchanged”[6]. The essen-
tial function of portlet
interoperation is to
provide a mechanism that
would facilitate portlet

198 J. Song, J. Wei, and S. Wan

interactions by enabling easy transfer of compatible data between portlets. Given the
above example, a better data flow is shown as follows: by one click in OMPortlet, the
CustomerID is transferred to CRMPortlet; then CRMPortlet submits a query request
automatically with the received CustomerID; and then the Occupation in the response
page and Date, ProductID in OMPortlet are transferred to BIPortlet automatically;
again a request is submitted. With such an automated mechanism, all required
information could be displayed in the three portlets simultaneously only by one
mouse click.

Thus, we can define the basic requirements of portlet interoperation as follows.

1. A portlet need not to be modified to take part in an interoperation. That
requirement enables interoperation between portlets within one portlet application,
portlets of different portlet applications and even remote portlets.

2. Supporting multiple outputs and 1:n communication. A portlet may have a set of
output candidates. In such a case, a user can choose which output data is used. Data
from one portlet may be simultaneously sent to a number of destination portlets.

3. Supporting portlet wiring. An interoperation process can be started automatically
or manually. Portlets involved in an interoperation are loosely coupled and can be
decomposed and re-composed easily.

To make it a general and platform independent approach, one additional
requirement is defined as follows:

4. Support standards based implementation. The use of standards allows reuse of
standard compliant portlets and enables the independency from a particular portal.

3.2 Achieving Interoperability at Different Layers of a Portlet

Usually, portlets employ a similar layered
architecture as general web applications, as
shown in Fig.2. The architecture consists of
four layers: resource layer, service layer,
orchestration layer and presentation layer.

Resource layer contains the resources that
a portlet uses, such as database, content
repository, and file system, etc. Service layer
consists of basic services that are developed
on top of resource layer, which represent
business logic software units that satisfy the
enterprise business requirements. Orchestra-
tion layer assembles services to coarse-grained business components. Presentation
layer creates the graphical view of the portlet, and interacts with portal users. It is
important to point out that presentation layer is not the user interface presented by
markup language such as HTML. Presentation layer is a part of a portlet. It has its
own model and process logic.

According to the analysis of section 3.1, the problem we concerned with is how to
achieve the association and transfer of HTML elements, which are located on
fragments, between portlets. It should be noted that we could achieve such a goal by
working on all these four layers. That is because the four layers of a portlet are related

Presentation Layer

Service Layer

Resource Layer

Orchestration Layer

DB/CR/File System/ERP/CRM/...

Presentation components with presentation logic

Services which implement basic business logic

Coarse-grained business logic components

Fragments written in HTML

Fig. 2. Layered Portlet Architecture

 An HTML Fragments Based Approach for Portlet Interoperability 199

with each other. When the model or data of a lower layer change, the data or model of
the layer above it will also change. However, the approach implemented on each layer
has some deficiencies or drawbacks that are list as follows:

1. Achieving portlet interoperability at resource, service and orchestration layer are
indirect solutions to the problem. To use these solutions, the portlet designers have
to consider interoperation requirements, such as which HTML elements in a
fragment are involved in the interoperation, besides the requirements of each layer
at design time, which increases the problem complexity.

2. Whatever layers we used to implement portlet interoperation, we have to know the
technical details of the portlet. For example, to implement interoperation at
resource layer, we have to know the data schema details of the resource the portlet
used. That also increases the complexity of portlet interoperation. Moreover, not all
information of each layer of a portlet is accessible in enterprise environment, e.g. a
portlet may be produced by wrapping an existing web-based application.

3. There are currently no acceptable and standard methods to invoke or to share the
components of the orchestration and presentation layer of a portlet, which makes it
difficult to achieve portlet interoperability at these two layers directly.

Thus, we have to find out another approach beyond such layers. Noted that all
portlets use HTML to describe their fragments and our goal is also to achieve the
association and transfer between HTML elements, we hope to find out a method
based on such HTML fragments that are produced by each portlet. Such an approach
at least has the following two merits:

1. It is a general and platform-independent solution. Because only HTML fragments
are employed, the approach can be used in different scenarios, no matter which
applications the portlet belongs to, how the portlet is designed and developed. That
makes possible that the approach can be implemented on different portal servers.

2. There is no need of the knowledge of the technical details of the portlets involved
in the interoperation. The approach does not care about the technical details such as
service interfaces, how to invoke a component, etc. That is also to say, there is no
need to modify a portlet to make it involved in an interoperation.

There are mainly two key problems in such an approach: how to describe the user
interfaces of a portlet i.e. the fragments produced by the portlet; how to define
associations and how to transfer data between HTML elements. We will propose our
approach to portlet interoperation based on the answer of these two questions.

4 Reference Model for Portlet Presentation Layer

Moreno et al. proposed a reference model for portlet[10]. In such a model, the
presentation layer consists of six main sub models: Conceptual, Navigation,
Presentation, User, Context and Adaptation, as shown in Fig.3a. The Conceptual
model encapsulates the information handled by the rest of the models at the
presentation layer. The Navigation model describes the application navigational
requirements building the navigational structure of the portlet. The Presentation
model captures the presentational requirements in a set of HTML elements. The User

200 J. Song, J. Wei, and S. Wan

model describes and manages the user characteristics. The Context model deals with
device, network, location and time aspects. The Adaptation model is used to obtain
appropriate web content characteristics and target markup.

For modeling the presentation layer of a portlet, we need at least its Conceptual,
Presentation, and Navigation models. However, as we do not know the exact internal
details of a portlet, we can only reconstruct the presentation components using
fragments by a reverse engineering way. So we propose a simplified presentation
model in our approach, which describes the most important characteristics of the
presentation layer of a portlet, as shown in Fig.3b. The simplified presentation model
consists of three sub models: Element, Location and Interaction. Element is a
simplified Conceptual model, which describes what types of elements are located on
the fragments. Location is a corresponding model to Presentation, which defines the
locations for each elements described in Element. Interaction is a simplified
Navigation model, which defines the interactive relationships between elements, e.g.
a customer’s name can be obtained by submitting a CustomerID.

Concept
Model

Presentation

Navigation

Adaptation

User

Context

Presentation Layer

Element

Location

Interaction

Presentation Layer

Fig. 3. (a) Presentation model of a portlet Fig. 3. (b)Simplified presentation model

5 Portlet Interoperation Model

Papadopoulos et al.[13] and Malone et al.[8] gave the basic model of coordination.

Definition 1. A coordination model can be viewed as a triple (E, L, M), where E
represents the entities being coordinated, L the media used to coordinate the entities,
and M the semantic framework the model adheres to.

In this paper, we propose a portlet interoperation model based on the above generic
coordination model, as shown in Fig.4.

Definition 2. A portlet interoperation model is the coordination model in a portal
context, it is defined as a tuple (PF, SC, SD, O, R), where PF is the set of fragments
of the portlets that participate in an interoperation. SC is the set of
ShadowComponents corresponding to PF. SD provides a shared data space for portlet
interoperation. O represents the ontology used in the interoperation. R represents the
ECA rule set that defines the conditions about when and how to execute a data flow.
From a coordination model point of view, SC is the entity of the semantic
coordination model, O and R together form the semantic framework of the portlet
interoperation model, and SD is the data coordination media.

 An HTML Fragments Based Approach for Portlet Interoperability 201

A ShadowComponent is constructed for each portlet, which takes part in an
interoperation, using its fragments. A ShadowComponent usually has several slots
that represent the HTML elements located in portlet fragments. The
ShadowComponent keeps synchronized with its corresponding portlet fragments
during the whole interoperation process. Each slot has its type that maps to a concept
of the ontology, which achieves semantic data type match between slots. Finally,
ECA rules define a data flow process, which uses ShadowComponent as its nodes. An
ECA rule specifies when and how a ShadowComponent receives matched data or
sends data to shared data space.
Because the portlet fragments are
synchronized with the corresponding
ShadowComponent, the execution of
such a data flow process transfers an
HTML element value on a portlet
fragment to a neighboring one, thereby
achieving portlet interoperability.

In the following subsection, the
detailed definitions of Shadow
Component, Operation Primitives and
ECA rule are presented. Then, we will
further explain the proposed
interoperation model by discussing the
implementation of such a model in a
real portal server.

5.1 ShadowComponent

Definition 3. A slot represents an HTML element in a given portlet fragment FP, it is
a triple (path, type, value) where path is the information extraction path, which we
proposed in [15], of the element in FP. An information extraction path is a
concatenation of node identifiers along a path from the root to the specified element,
thereby specifying the location of an element. type represents the slot type with its
value constrained to the concept set defined in the ontology, value stores the current
value of the slot.

Definition 4. A ShadowComponent is a component constructed using portlet
fragments and is synchronized with the fragments of the portlet. A ShadowComponent
is defined as a tuple (triggerSlot, IS, OS, inputProperty, outputProperty, status) where
Both IS and OS are slot set, representing input and output data of the
ShadowComponent. triggerSlot is a special slot whose value is a URL, which
indicates the interaction relationship between IS and OS. Usually the URL represents a
“submit” or “click” action that returns output data using current input data.
InputProperty∈{MANUAL,AUTO,TRIGGER} and outputProperty∈{MANUAL,
AUTO}, which decide the data process policy of the ShadowComponent. The
descriptions of these values are showed in table 1. status is a BOOL variable, which is
used to indicate if all input data needed could be obtained from a shared data space.

Portlet
Fragments

ECA rules

Shadow
Component Shared data space

Ontology

Semantic framework

Set/Get data

Slots mapto ontology to achieve
semantic data type matching

ECA rules specify when and how to
receive matched data from or send

data to Shared data space.

A
 S

ha
do

w
C

om
po

ne
nt

s
is

co
ns

tr
uc

te
d

an
d

is
 s

yn
ch

ro
ni

ze
d

 w
it

h
it

s
po

rt
le

t
fr

ag
m

en
ts

Fig. 4. Portlet interoperation model

202 J. Song, J. Wei, and S. Wan

Table 1. A summary of input/output properties

Property Summary(Input) Summary(Output)
MANUAL A user decides when the data are loaded

from Shared data space
A user decides when the data are sent to
Shared data space

AUTO Data are loaded from Shared data space
as long as all input data needed is ready

Data are sent to Shared data space
automatically if they are available in fragments

TRIGGER Data are loaded if all input data needed is
ready, then a request is submitted
automatically after the fragment is
displayed in the client side browser

/

ShadowComponent is the realization of the simplified reference model of a portlet

presentation layer, which is proposed in section 4. The types of input and output data
form the Element model; the paths of input data and output data form the Location
model; whereas the triggerSlot, IS and OS together form the Interaction model.

5.2 Operation Primitives

The operation primitives in portlet interoperation model consist of two parts: slot
operation primitives and ShadowComponent operation primitives. Slot operation
primitives include GetValue and SetValue. ShadowComponent operation primitives
include Import, Export and SetStatus. Table 2 gives the detail.

Table 2. Descriptions of Operation Primitives

Operation
Primitive

Belongs to Description

GetValue Slot Load matched data from Shared data space
SetValue Slot Send current slot value to Shared data space
Import ShadowComponent Invoke GetValue action of all IS slots of the

ShadowComponent
Export ShadowComponent Invoke SetValue action of all OS slots of the

ShadowComponent
SetStatus ShadowComponent Set the status of the ShadowComponent

Table 3. Descriptions of Events

Event Para Table Description
SlotDataReady (slot) There is a match data for the given slot in Shared data

space
TriggerOutput (ShadowComponent) A user starts a request to output data manually
InputDataReady (ShadowComponent) Data for all input slots of a ShadowComponent sc is ready
AskForInput (ShadowComponent) A user starts a request to input data from Shared data

space

5.3 ECA Rules

We employ an event-based architecture[5] to define data flow process between
ShadowComponents.

 An HTML Fragments Based Approach for Portlet Interoperability 203

Definition 5. ECA rule is the fundamental metaphors for defining and enforcing data
flowing logic, it is a tuple (event, condition, action) where the possible values of
event include SlotDataReady, TriggerOutput, InputDataReady and AskForInput.
Each event has parameters indicating to whom the event is oriented. Details of each
event are shown in table 3. condition is a logic expression that is composed of
inputProperty and outputProperty of a ShadowComponent. action is composed of
ShadowComponent operation primitives. condition could be null, which indicates the
action should be executed as long as the event occurs. When an action consists of
several operations, the operations should be executed serially. For example, the
ECA-rule

ON InputDataReady(sc1) [IF sc1.inputPorperty = = TRIGGER]
DO sc1.Import, sc1.SetStatus(TRUE)

indicates that when an event InputDataReady happens, if the inputProperty of the
corresponding ShadowComponent is TRIGGER, the ShadowComponent will first
import data, then set status to TRUE.

6 Implementation

We have validated our approach by extending OncePortal portal system of ONCE
platform[12]. OncePortal is a JSR168 and WSRP compatible portal, which can
integrate different resources and aggregate them into personalized page. Since our
implementation is based on the Portlet and WSRP specifications, it can be easily
migrated to any JSR168 compatible portal server.

6.1 Constructing ShadowComponents

The key to construct a ShadowComponent is slot definition. The information
extraction path used to define a slot is specified in the context of a fragment. Because
there are usually several fragments returned by a portlet during the whole
interoperation process, we have to consider in which fragment the slot is defined. We
use the following two methods in our implementation:

• In default, we assume that the slots of IS and triggerSlot of a ShadowComponent
are defined in the first fragment produced by a portlet. If a ShadowComponent has
no input slots, then slots of OS are defined in the first fragment. In most practice
scenarios, these assumptions can be satisfied, whereas they decrease the
implementation complexity greatly.

• Adding fragment marks. If the above assumption cannot be satisfied, then we need
to do some modification to the portlet, which adds marks to the fragment to
indicate that it has IS or OS slots. Such marks can be simply added as the
properties of an HTML element on the fragment or provided as HTML
annotations.

204 J. Song, J. Wei, and S. Wan

A ShadowComponent can be constructed visually by specifying some portions on
the portlet fragments to work as IS/OS slots through mouse operations or can be pre-
configured using configuration file.

6.2 InteroperationFilter

InteroperationFilter is one of the most important components in our approach. Fig.5
gives the location of InteroperationFilter during the whole interoperation process.

When a user submits a request in a
browser, it is received by portal servlet.
We define two types of portal request
in a portlet interoperation process:
normal request and interoperation
request..

For a normal request, portal servlet
uses a pre-defined user page profile to
find which portlets are needed to build
the requested page. It then forwards the
request to the corresponding portlets.
Each portlet returns a fragment, which
is aggregated with a general page frame
and the fragments returned from the
other portlets to form the final portal
page. In common portals, the page will be returned to the browser and waiting for
next request at this time. However, to achieve portlet interoperability, we first transfer
the fragments returned by each portlet to InteroperationFilter, which rewrites each
fragment based on the interoperation related information. Then portal servlet uses
such modified fragments to assemble the final page and returns it to the browser.
Based on the fragment and the input/output properties of the corresponding
ShadowComponents, there are two types of process:

1. There are output parameters on the fragment, the value of outputProperty is
MANUAL. In such a case, InteroperationFilter modifies the fragment so that to
insert icons before each output parameter. By clicking on an icon, a user can output
a parameter or the whole of the parameters that the portlet provides. From technical
point of view, such a click submits an interoperation request, which embeds the
output parameters as its request parameter.

2. There are output parameters on the fragment, the value of outputProperty is
AUTO. InteroperationFilter informs the ShadowComponent to export its output
parameters to Shared data space. The value of outputProperty is not allowed to be
AUTO, if the ShadowComponent has an output parameter whose path has variable,
preventing the situation that which parameters to be used cannot be decided.

After finishing the process, new data are added or updated to Shared data space,
which may create new events, such as InputDataReady, etc. Such events then trigger
certain actions, which may start the three types of process for input parameters:

1. There are input parameters on the fragment and the value of inputPorperty is
MANUAL. In such a case, if all input parameters of the ShadowComponent can be

User Portal
Page Profile

Portal Servlet Interoperation
Filter

Portlet Portlet Portlet WSRP
Proxy Portlet

Portlet

Portal Server Application

Portlet Application
Portlet
Application

Portlet
Application

Portlet Application WSRP Producer

Portal Server

Remote Portal Server

Client

Normal Request

Interoperation
Request

Fig. 5. Portlet interoperation process

 An HTML Fragments Based Approach for Portlet Interoperability 205

obtained from Shared data space, then inserts an icon into the fragment, which will
submit an interoperation request when it is clicked on.

2. There are input parameters on the fragment and the value of inputProperty is
AUTO. In such a case, InteroperationFilter retrieves data from Shared data space
and fills the input slots of the ShadowComponent automatically. Different with the
process when inputProperty value is MANUAL that an icon will be inserted only
when all input parameters are ready, InteroperationFilter will try to fill each slot as
long as a matched data can be obtained from Shared data space for it.

3. There are input parameters on the fragment and the value of inputProperty is
TRIGGER. In such a case, the process is similar to the case when inputProperty is
MANUAL i.e. it is only be processed when all input parameters needed are ready
in Shared data space. After the input parameters are filled into the fragment, a
block of JavaScript is further added to the element that is specified by triggerSlot
of the ShadowComponent, whose function is to submit the page automatically after
the page is displayed in the browser.

On the other hand, an interoperation request is processed by InteroperationFilter
directly. InteroperationFilter creates events according to the request, which ultimately
results in the data flowing between ShadowComponents and Shared data space based
on ECA rules. There are two types of interoperation request:

1. A user outputs data manually i.e. a user clicks the icon that is inserted by
InteroperationFilter for the fragment whose corresponding ShadowComponent’s
outputProperty is MANUAL during the process of normal request. In such a case,
InteroperationFilter creates event TriggerOutput that results in the execution of
Export operation of the ShadowComponent, which exports data to Shared data
space. Also, other events may be created because the adding or updating of data.

2. A user requires to fill data manually i.e. a user clicks the icon that is inserted by
InteroperationFilter for the fragment whose corresponding ShadowComponent’s
inputProperty is MANUAL. In such a case, InteroperationFilter creates event
AskForInput, which results in the execution of Import operation of the
ShadowComponent, thereby loading data from Shared data space.

The definition information for ShadowComponents is stored in portal page profiles
for each user, while not the portlet related profiles, so that to ensure that given the
same portlet, a user can decide whether that portlet takes part in an interoperation
process and how the interoperation happens.

Whatever type of a request that is received, InteroperationFilter initializes
ShadowComponents or synchronizes the ShadowComponents with corresponding
fragments, i.e. to update the input/output parameters using the received fragment,
based on current interoperation definition information. After all event and action are
processed, another synchronization from ShadowComponents to fragments is
processed i.e. to update the fragments using current input/output data of the
corresponding ShadowComponents. Moreover, fragments are cached to ensure the
interoperation request can be processed by InteroperationFilter only.

6.3 Interoperation Process

InteroperationFilter is the only component that interacts with portal servlet. However,
the whole interoperation process is supported by several components together.

206 J. Song, J. Wei, and S. Wan

:PortalServlet :InteroperationFilter

:Engine

 : ShadowComponent

 :ECARule

:E
ve

ntInitialize

Initialize/Synchorize

Fragments/Profile

 :Event

:SharedDataSpace

C
re

at
e

U
se

Ontology

:E
ve

nt

:A
ct

io
n

Data

Modified Fragments

Create

Fig. 6. Collaboration Diagram of Portlet Interoperation

Event:TriggerOutput(OmSC,customerIDSlot)

Action:OmSC.Export

Event:InputDataReady(CrmSC)

Action:CrmSC.Import

Event:InputDataReady(BiSC)

Event:TriggerOutput(CrmSC)

Action:CrmSC.Export

Action:BiSC.Import

A User clicks the icon in OMPortlet to output
CustomerID,ProductID and Date information

The fragment of CRMPortlet synchronizes with
CrmSC£¬and then a block of script is further
added to the fragment to submit a customer
query request automatically.

In
te

ro
pe

ra
tio

n
R

eq
ue

st

The fragment of BIPortlet synchronizes with
BiSC, and then a block of script is further
added to the fragment to submit a business
intelligence request automatically

N
or

m
a

l
R

eq
ue

st

Again, BIPortlet submits the request automatically and finally comprehensive
information will be display in the same portal page only be one click of the user.

Action:CrmSC.SetStatus(TRUE)

CrmPortlet submits the request automatically

Action:BiSC.SetStatus(TRUE)

Fig. 7. Sequence of events and actions of an interoperation

Besides InteroperationFilter, other important components include ECA rule engine,
Shared data space, ShadowComponent instances, etc. The collaboration diagram is
shown in Fig.6.

InteroperationFilter
receives fragments and user
portal page profiles from
portal servlet and then ini-
tializes ShadowComponents
and ECA rules based on
such information. New
events are created by
InteroperationFilter and
Shared data space. When
receiving these events, ECA
rule engine sends actions to
certain ShadowComponents
based on current ECA rules.
The events created by InteroperationFilter are mainly related to user interactions such
as TriggerOutput, AskForInput, whereas the events created by Shared data space are
mainly data-related such as InputDataReady, SlotDataReady. The execution of an
action may create new events that result in new actions. When there is no event
created, InteroperationFilter does the synchronization from ShadowComponents to
fragments and decides if scripts should be added to fragments based on their
properties such as if status is TRUE. All modified fragments and other cached
fragments that are not involved in the interoperation then are returned to portal servlet
to aggregate the final portal page. InteroperationFilter will wait for next request.

For the scenario des-
cribed in 3.1, the events
and actions sequence of
an interoperation pro-
cess is depicted in Fig.7.
OmSC, CrmSC and
BiSC are corresponding
ShadowComponents for
OMPortlet, CRMPortlet
and BIPortlet. Com-
prehensive information
are displayed in a portal
page only by one mouse
click.

6.4 A Practical Example

Our framework opens a new vista to the integration of applications and services in
portal context, which makes possible portal-based composite applications.

 An HTML Fragments Based Approach for Portlet Interoperability 207

Fig. 8. (a)Trigger a portlet interoperation

Fig. 8. (b) After the portlet interoperation

Fig.8 shows a com-
posite application that is
constructed in OncePortal
using our proposed portlet
interoperation approach.
The composite application
is composed of three
portlets: TripSchedule,
WeatherForecast and
FlightSearch. The Trip-
Schedule portlet is an
internal information sys-
tem that shows the user’s
trip schedule in the near
future. The Weather
Forecast portlet provides
weather information for a
given city and the
FlightSearch portlet pro-
vides flight information
from the user’s current
city to a destination city.
They are constructed by
wrapping two Internet
web sites: eLong Flight[4]
and Yahoo Weather [17]
using the approach
proposed in [3].

We configure the
ShadowComponents for
the three portlets man-
ually by defining the con-
figuration file. The
corresponding
ShadowComponent of TripSchedule has two output parameters: DestinationCity and
DepartureDate. WeatherForecast has one input parameter: City. FlightSearch has two
input parameters: DepartureDate and DestinationCity. When a user clicks on the icon
before each row of the trip schedule table, which is generated automatically by
InteroperationFilter, and chooses OUTPUT All (Fig.8a), WeatherForecast and
FlightSearch portlets will receive DepartureDate and DestinationCity from
TripSchedule, and show the weather and flight information for the specified city and
date (Fig.8b).

7 Conclusion

Portals provide presentation level integration capability. Portlet interoperability makes
possible portal-based composite applications, which enable users to easily fuse data

208 J. Song, J. Wei, and S. Wan

and processes from multiple existing stove-piped systems into a unified solution at
presentation level.

This paper describes an HTML fragments based approach for portlet
interoperability. We first construct a presentation component, which is named as
ShadowComponent, for each portlet involved in a portlet interoperation using its
fragments, then define a data flow process between ShadowComponents using ECA
rules, and finally drive such a process by creating events to fulfill data flow between
ShadowComponents. As the fragments of a portlet are synchronized with their
corresponding ShadowComponents, such a process enables the portlet interoperation.
The proposed approach fulfills all functional and non-functional requirements defined
in Section 3.1. The most important features of our approach are: (1) it is a general and
platform-independent solution; (2) no knowledge of the internal workings of the
interoperating portlets is required. That is also to say, a portlet need not to be
modified to take part in an interoperation process.

Acknowledgments

This paper was supported by the National Natural Science Foundation of China under
Grant No.60673112; the National High-Tech R&D Plan of China under Grant
Nos.2006AA01Z19B, 2006AA01Z161; the National Key Technology R&D Program
of China under Grant No. 2006BAH02A08.

References

[1] Clarke, S.: Standards for Second-Generation Portals. IEEE Internet Computing 8(2),
54–60 (2004)

[2] Díaz, O., Iturrioz, J., Irastorza, A.: Improving portlet interoperability through deep
annotation. In: Ellis, A., et al. (ed.) Proc. of the 14th Int’l Conf. on World Wide Web,
pp. 372–381. ACM Press, NewYork (2005)

[3] Díaz, O., Paz, I.: Turning Web Applications into Portlets: Raising the Issues. In: Proc. of
the 2005 Symposium on Applications and the Internet, pp. 31–37. IEEE Computer
Society, Washington, DC (2005)

[4] eLong Flight (2006) http://www.elong.net/flights
[5] Geppert, A., Tombros, D.: Event-based Distributed Workflow Execution with EVE. In:

Davies, N., et al. (eds.) Proc. of the IFIP/ACM Int’l Conf. on Distributed Systems
Platforms and Open Distribued Processing(Middleware), The Lake District, pp. 427–442.
Springer, Heidelberg (1998)

[6] Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries, New York (1990)

[7] Java Community Process. JSR 168 Portlet Specification (2003) http://www.jcp.org/
en/jsr/detail?id=168

[8] Malone, T.W., Crowston, K.: The Interdisciplinary Study of Coordination. ACM
Computing Surveys 26(1), 87–119 (1994)

[9] McDonough, B.: Enterprise Portal Survey. An Examination of Business Processes
Driving Adoption (2004) http://www.marketresearch.com/map/prod/1045547.html.(2004)

 An HTML Fragments Based Approach for Portlet Interoperability 209

[10] Moreno, N., Romero, J.R., Vallecillo, A.: Incorporating Cooperative Portlets in Web
Application Development. Workshop on Model-driven Web Engineering (MDWE 2005)
(2005)

[11] OASIS. Web Services For Remote Portlets Specification (2003) http://www.oasis-
open.org

[12] Once Platform (2005) http://www.once.com.cn
[13] Papadopoulos, G., Arbab, F.: Coordination Models and Languages. In: Zelkowitz, M.

(ed.) Advances in Computers, vol. 46, pp. 329–400. Academic Press, New York (1998)
[14] Roy-Chowdhury, A., Ramaswamy, S., Xu, X.: Using Click-to-Action to Provide User-

Controlled Integration of Portlets (2002) http://www7b.software.ibm.com/wsdd/library/
teacharticles/0212_roy/roy.html

[15] Song, J., Wei, J., Wan, S., Huang, T.: Extending Interactive Web Services for Improving
Presentation Level Integration in Web Portals. Journal of Computer Science and
Technology 21(4), 620–629 (2006)

[16] Weinreich, R., Ziebermayr, T.: Enhancing Presentation Level Integration of Remote
Application and Services in Web Portals. In: Proc. IEEE Int’l Conf. on Services
Computing(SCC05), pp. 224–236 (2005)

[17] Yahoo Weather (2006) http://weather.yahoo.com

Scalable Processing of Context Information with
COSMOS

Denis Conan1, Romain Rouvoy2, and Lionel Seinturier3

1 GET/INT, CNRS Samovar
9 rue Charles Fourier, 91011 Évry, France

Denis.Conan@int-evry.fr
2 University of Oslo, Department of Informatics

P.O.Box 1080 Blindern, 0316 Oslo, Norway
rouvoy@ifi.uio.no

3 INRIA-Futurs, Projet Jacquard/LIFL
Université des Sciences et Technologies de Lille (USTL)

59655 Villeneuve d’Ascq, France
Lionel.Seinturier@inria.fr

Abstract. Ubiquitous computing environments are characterised by a
high number of heterogeneous devices that generate a huge amount of
context data. These data are used to adapt applications to changing
execution contexts. However, legacy frameworks fail to process context
information in a scalable and efficient manner. In this paper, we pro-
pose to organise the classical functionalities of a context manager to
introduce a 3-steps cycle of data collection, interpretation, and situation
identification. We propose the COSMOS framework, which is based on
the concepts of context node and context management policies translated
into software components in software architecture. This paper presents
COSMOS and evaluates its efficiency throughout the example of the
composition of context information to implement a caching/off-loading
adaptation situation.

Keywords: Mobile computing, context, architecture, component.

1 Introduction

Ubiquitous computing environments are characterised by an high number of
mobile devices, wireless networks and usage modes. Distributed applications for
such environments must continuously manage their execution context in order
to detect the conditions under which some adaptation actions are required [6].
This execution context contains various categories of observable entities, such
as operating system resources, user preferences, or sensors. Data coming from
these entities are often related and aggregated to provide a high-level and co-
herent view of the execution context. Besides, the management of such a view

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 210–224, 2007.
c© IFIP International Federation for Information Processing 2007

Scalable Processing of Context Information with COSMOS 211

is under the responsibility of a context manager, which is furthermore in charge
of identifying situations where applications need to be adapted.

Two categories of approaches exist in the literature for context management:
The ones that are “user-centred”, and those based on “system” supervision. This
paper wishes to reconciliate both by proposing a component-based framework
for context management.

With the “user-centred” approach, context includes the user terminal, nearby
small devices, such as sensors and devices reachable through a network. Exist-
ing works in the literature [6,10,17] divide context management into four func-
tionalities: Data collecting, data interpreting, condition-for-change detection, and
adaptation usage. The central point of existing frameworks consists in computing
high-level abstract information about the context from some low-level raw data.
In our opinion, two weak points can be identified in these frameworks: (i) the
difficulty for composing context information and (ii) scalability, either in terms
of the volume of processed data and/or in terms of the number of supported
client applications.

The “system” supervision approachhas been studied thoroughly in the past [15].
This approach is gaining again some attention as clusters, grids [2,4] and ubiqui-
tous computing [7,9] are becoming mainstream. Existing solutions consist in in-
strumenting operating systems and collecting data. The weak point of frameworks
in this approach is often that the collected data are numerical and too low-level for
being used efficiently by adaptation policies.

This paper proposes COSMOS (COntext entitieS coMpositiOn and Sharing),
which is a component-based framework for managing context data in ubiqui-
tous environments. The applications we are targeting are, for example, tourist
computer-based guides with contextual navigation or applications with contex-
tual annotations, such as multi-player games. The context management provided
by the COSMOS framework is (i) user and application centred to provide in-
formation that can be easily processed, (ii) built from composed instead of pro-
grammed entities, and (iii) efficient by minimising the execution overhead. The
originality of COSMOS is to combine component-based and message-oriented
approaches for encapsulating context data, and to use an architecture descrip-
tion language (ADL) for composing these context data components. By this way,
we hope to foster the design, the composition, the adaptation and the reuse of
context management policies.

This paper is organised as follows. Section 2 motivates the definition of the
COSMOS framework for composing context information. Section 3 presents the
design of the COSMOS framework, starting from the concept of a context node,
and then proceeding by presenting the design patterns that are proposed for
composing context nodes. Section 4 presents the case study of a caching/off-
loading adaptation situation. Sections 5 and 6 reports on the implementation of
the COSMOS framework and evaluates its performances, respectively. Section 7
presents some related work. Finally, Section 8 concludes this paper and identifies
some perspectives.

212 D. Conan, R. Rouvoy, and L. Seinturier

2 Overview and Motivations

This section proposes a general overview of COSMOS, which is our framework for
context management. The architecture of the COSMOS framework is illustrated
in Figure 1. COSMOS is divided into three layers: the Context collector layer,
the Context processing layer, and the Context adaptation layer.

The lower layer of the COSMOS framework defines the notion of a context
collector. Context collectors are software entities that provide raw data about the
environment. These pieces of data come from operating system probes, network
devices (e.g., sensors), or any other kind of hardware equipment. The notion of
a context collector also encompasses information coming from user preferences.
The rationale for this choice is that context collectors should provide all the
inputs needed to reason about the execution context.

The middle layer of COSMOS defines the notion of a context processor. Con-
text processors filter and aggregate raw data coming from context collectors.
The purpose is to compute some high-level, numerical or discrete, information
about the execution environment. The status of the network link (e.g., strongly
connected, weakly connected, or disconnected) is an example of the piece of in-
formation outputted by a context processor. Data provided by context processors
are fed into the adaptation layer.

The upper layer of COSMOS is concerned with the process of decision making.
The purpose is to be able to make a decision on whether or not an adaptation
action should be planned. The adaptation layer is thus a service that is provided
to applications and that encapsulates the situations identified by context nodes
and processors.

Context processing

Context adaptation

User profilesRemote dataSensorsSystem ressources

Context collector Data collecting

Data interpretation

Situations identification

Fig. 1. Architecture of a COSMOS context manager

To provide a scalable context processing framework, the design of COSMOS
has been motivated by three founding principles: separation of concerns, isolation
and composability. We elaborate on these principles in the next paragraphs.

The notion of separation of concerns promotes a clear separation of func-
tionalities into different modules. In the case of the COSMOS framework, the
activities we want to separate are related to the grabbing of context informa-
tion, the interpretation of this information, and the decision making process.
The actions undertaken in these three cases correspond to three separate soft-
ware engineering domains. The context collector layer addresses issues that are
related to network technologies with solutions, such as UPnP for discovering and

Scalable Processing of Context Information with COSMOS 213

connecting devices, to distributed systems with, for example, data consistency
protocols and network failure detectors, and to operating systems for information
about hardware devices. Although separate, these three domains (network, dis-
tributed systems and operating systems) are close. The context processor layer
addresses issues that are quite different. The techniques used to aggregate, filter,
and reason about context data are related to domains, such as software engi-
neering, databases, or information systems. One can also envision case studies
where inference engines are used to implement the process of decision making.
Finally, the context adaptation layer is directly related to the application be-
ing developed. The adaptation scenarios which are handled by this layer are
domain-specific. The fact that all these concerns are quite different motivated
the definition of the three above-mentioned layers.

The second principle which motivated the definition of a 3-layers architecture
for the COSMOS framework, is to isolate the part that interacts with the oper-
ating system, from the rest of the framework and of the application. Although
adaptation actions should not be too frequent, processing context information is
an activity that must be conducted more often, while data gathering is a third
activity that must be continuous. Thus, we have three different activities with
different frequencies. We decouple as much as possible these activities in order to
obtain a non-blocking and usable framework. Each activity is conducted in one
of the three layers, which has its own autonomous life cycle: Each layer performs
a 3-steps cycle of data collection (from its lower layer), processing, and decision
making (for its upper layer). This principle is illustrated on the right side of
Figure 1.

Composability is the third principle that motivated the design of the COSMOS
framework. We want to obtain a solution where context information can be eas-
ily assembled. By being able to compose context information, we hope to foster
the reuse of context management policies. For this, we adopt a component-based
software engineering approach: As explained in the next section, context infor-
mation is reified into software components. By connecting these components, we
define assemblies that gather all the data needed to implement a specific policy.

3 Building Context Management Policies from Context
Nodes

In this section, we present the composition of context information with COS-
MOS. Sections 3.1 and 3.2 introduce the concept of context nodes, their proper-
ties and parameters. Next, Section 3.3 defines the generic architecture of context
nodes. Finally, Section 3.4 is focused on the design of the overall architecture of
COSMOS, that is the relationships between the context nodes.

3.1 Concept of Context Node

The basic structuring concept of COSMOS is the context node. A context node
is a context information modelled by a component. Context nodes are organised

214 D. Conan, R. Rouvoy, and L. Seinturier

into hierarchies with the possibility of sharing. The graph of context nodes repre-
sents the set of context management policies defined by client applications. The
sharing of a context node (and by implication of a partial or complete hierarchy)
corresponds to the sharing (of a part or the whole) of a context management
policy.

COSMOS provides the developer with pre-defined generic context nodes: Ele-
mentary nodes for collecting raw data, memory nodes, such as averagers, trans-
lation nodes, data mergers with different quality of service, abstract or inference
nodes, such as additioners, thresholds nodes, etc. Note that in a classical context
manager architecture the first nodes constitute the collectors, most of the other
ones are part of the interpretation layer, while the last thresholds based ones
serve to identify situations. In COSMOS, each class of nodes can be used in
every layers, hence leveraging the expressiveness power of context policies.

3.2 Properties of a Context Node

Passive vs. active. A passive node obtains context information upon demand.
A passive node must be invoked explicitly by another context node (passive or
active). An active node is associated to a thread and initiates the gathering
and/or the treatment of context information. The thread may be dedicated to
the node or be retrieved from a pool. A typical example of an active node is the
centralisation of several types of context information, the periodic computation
of a higher-level context information, and the provision of the latter information
to upper nodes.

Observation vs. notification. The observation reports containing context infor-
mation are encapsulated into messages that circulate from the leaves to the root
of the hierarchies. When the circulation is initiated at the request of parent nodes
or client applications, it is an observation. In the other case, this is a notification.

Blocking or not. During an observation or a notification, a node that treats the
request can be blocking or not. During an observation, a non-blocking context
node begins by requesting a new observation report from each of its child nodes,
and then updates its context information before answering the request of the
parent node or the client application. During a notification, a non-blocking node
computes a new observation report with the new context information just being
notified, and then notifies the parent node of the client application. In the case
of a blocking node, an observed node provides the most up-to-date context in-
formation that it possesses without requesting child nodes, and a notified node
updates its state without notifying parent nodes. In addition, a node can be con-
figured for a unique observation or notification if its state is immutable. Finally,
the observation of a node can raise exceptions, for instance when the physical
resource is not present or in case of a configuration problem. On demand, the
thrown exception can be masked to parent nodes or client applications, and
default values can be provided in that case.

Scalable Processing of Context Information with COSMOS 215

3.3 Architecture of a Context Node

The architecture of a context node is component-based. This architecture is im-
plemented with the Fractal component model [3] and its associated tools:
the Fractal ADL architecture description language, and the DREAM [13]
message-oriented component library. We take advantage of the two main charac-
teristics of Fractal which are to provide a hierarchical component model with
sharing. However, nothing is specific to Fractal in our design and COSMOS
could be implemented with any other component model supporting these two
notions.

Each context information is a context node which extends the composite
abstract component ContextNode (see Figure 2). Pull and Push are interfaces
for observation and notification. A ContextNode contains at least an opera-
tor (primitive abstract component ContextOperator), and is connected to the
message-oriented communication service provided by the DREAM framework.
The properties introduced in Section 3.2 become component attributes of Con-
textOperator. By default, nodes are passive (isActiveXxx = false), non-blocking
(xxxThrough = true), and the observation reports are mutable (xxxOnlyOnce
= false). The attributes nodeName and catchObservationException serve to name
the context node, and to specify whether the exceptions which may be thrown
must be forwarded to parent nodes (the default value is false), respectively.

Connection to the
message-oriented

of Dream

communication service
Operator

[pull-obs-out] Pull
[push-notif-in] Push

* [pull-obs-in] Pull
* [push-notif-out] Push*

ContextNode

Context

isActiveObserver(F), periodObserve(0), observeThrough(T)
isActiveNotifier(F), periodNotify(0), notifyThrough(T)
observeOnlyOnce(F), notifyOnlyOnce(F){
nodeName, catchObservationException(F)

Fig. 2. Abstract Composite ContextNode

Context nodes are then classified into two categories. Leaves of the hierarchy
import context information from a lower layer of the context management ar-
chitecture. This lower layer may be the operating system or another framework,
built with COSMOS or not, component-oriented or not. For instance, a WiFi re-
source manager can obtain the corresponding context information directly from
the operating system (through system calls) or can encapsulate a (legacy) frame-
work dedicated to the reification of system resources. Nodes of the graph that
are not leaves, contain one or several other context nodes. For instance, a context
node may compute the overall memory capacity of a terminal by encapsulating

216 D. Conan, R. Rouvoy, and L. Seinturier

two other context nodes, the first one computing the average free memory and
the second one computing the average free swap.

3.4 Architecture of COSMOS

COSMOS proposes three design patterns to compose context nodes. These are
architectural design patterns which organise the collaboration between con-
text nodes to implement the context management policy. The four patterns
that are used by COSMOS are: Composite, Factory method, Flyweight and
Singleton.

The hierarchical composition of context nodes is achieved with the “Com-
posite” [11] design pattern. This design pattern homogenises the definition of
the architecture and allows defining elements composed of several sub-elements,
which may be themselves either composite or primitive elements. Hierarchies
built in COSMOS take advantage of nodes composition for inferring higher-level
context information. The Composite pattern simplifies the composition of con-
text nodes and the management of their dependencies.

Each node of the hierarchy encapsulates a particular treatment on the infor-
mation provided either by child nodes or by encapsulated primitive components
in the case of leaves. The context nodes apply a component-oriented version
of the design pattern “Factory method” [11]. The skeleton of a context node is
defined as the assembly of a context operator (extension of ContextOperator)
with, on the one hand, the components for the extra-functional services and on
the other hand, the child nodes. Thanks to this approach, the definition of a
context node remains simple. In addition, the internal object-oriented design of
the primitive component ContextOperator also follows the design pattern “Fac-
tory method” (the object-oriented version). Through its server interfaces, this
component defines generic (resp. abstract) methods to overload (resp. imple-
ment). The algorithms for observing and notifying are always the same. Thus,
the skeletons of theses algorithms are generic and delegate specific treatments
to sub-classes.

The system resources reified in the nodes of the hierarchy can be shared
by several context nodes since the leave nodes may contain lots of elementary
context data. This is precisely the purpose of the design pattern “Flyweight” [11]
to efficiently share numerous fine-grained objects. By applying a component-
oriented version of this design pattern, context nodes in COSMOS can efficiently
share any child node of the hierarchy.

4 Case Study

In this section, we assess the expressiveness and the quality of context composi-
tion using COSMOS with a scenario from the domain of ubiquitous computing:
Caching/off-loading (see Section 4.1) which is implemented with context nodes
(see Section 4.2).

Scalable Processing of Context Information with COSMOS 217

4.1 Caching/Off-Loading Scenario

The scenario of the case study follows. We assume that the user of a mobile
terminal executes a distributed application while roaming. The WiFi connection
of the mobile terminal is subject to disconnections. In order to tolerate such dis-
connections, the middleware platform can be augmented with the capabilities of
importing/caching application entities into a software cache. Another issue is the
capability of exporting/off-loading application treatments on (more powerful)
hosts of the wired network. In order to choose between caching and off-loading,
the context manager computes the memory capacity as the sum of the average
free memory plus the average free swap. The context manager also monitors the
connection to the WiFi network. It detects disconnections and computes the ad-
justed bit rate (average bit rate during periods of strong connectivity). When the
memory capacity is sufficient, but the adjusted bit rate low, caching is preferred.
When the memory capacity is low, but the adjusted bit rate sufficient, off-loading
is preferred. In the two other cases, the end-user or the middleware platform give
their preferences (caching or off-loading). Once the decision is taken, connectiv-
ity information is used to detect the activation instants for caching/off-loading
when the connectivity mode changes (from strongly connected to disconnected
and vice versa).

4.2 Implementation with COSMOS Context Nodes

The implementation with context nodes of the above described scenario is illus-
trated in Figure 3. Every node is given an intuitive name expressing the context
operator it contains. The edges of the graph model the composition and the shar-
ing relationships. When the value of a property differs from the default case, this
value is indicated next to the node: Active observations and notifications, block-
ing or non-blocking, etc. In the example, most of the actives nodes are observers;
only the nodes that detect state changes (User preference’s change detector and
Connectivity detector) and decision changes (Decision stabilisation) notify their
changes to parent nodes. Note that the Connectivity detector node is shared by
two parents, one of them being not a direct parent. The WiFi manager is shared
by three parent nodes. This is a blocking node. This choice has been made to
avoid emitting system calls too frequently and thus to avoid freezing the user
device.

The decision When caching/off-loading? requires a graph of approximately
twenty context nodes. In COSMOS, developers have at their disposal raw nu-
merical data: Swap size, free swap, free memory, WiFi link quality, etc., plus
composition facilities that help in declaratively composing these data. The re-
sulting solution is thus reusable for other use cases. Furthermore, developers are
assisted in the management of extra-functional concerns: These tasks prove to
be cumbersome, and indeed even not completely manageable. The strength of
COSMOS thus lies into the separation of concerns: Separation of business con-
cerns (relevant raw data and inference treatments) from extra-functional ones
(system resource management for performance).

218 D. Conan, R. Rouvoy, and L. Seinturier

detector

WiFi link WiFi
bit rate

Caching or off−loading

When caching/off−loading?

WiFi adjusted bit rate

quality

Connectivity

variable?
Is bit rate

WiFi
manager

Free
memory

Memory
manager

Free
swapsize

Swap

Swap
manager

Memory capacity

swap
Average

Average bit rate
if variable

System call System call System call

max 1

Average
memory

Average
link quality

Decision stabilisation

detection
Condition−for−change

Data interpretation

Data gathering

max 1

Block notification

Block observation

At most one obs./notif.

Active observer

Active observer and notifier

Caching/offloading
preference

manager
User preference

Registry call

User preference’s
change detector

Fig. 3. Example of Composition of Context Nodes

5 Implementation of COSMOS

The implementation of the COSMOS framework is based on three existing frame-
works: Fractal, DREAM, and SAJE. Fractal [3] is the component model
of the ObjectWeb consortium for open-source middleware. Fractal defines
a lightweight, hierarchical and open component model (see http://fractal.
objectweb.org). We use the Julia [3] version, which is a Java implementation
of Fractal. We also take advantage of the numerous tools available for this
component model, such as Fractal ADL, FPath, and Fraclet (a lightweight
programming model). DREAM [13] is a library composed of several Fractal
components. DREAM allows the construction of message-oriented middleware
(MOM) and the fine-grained control of concurrency management with thread
pools and message pools. Finally, SAJE [5] is a framework for gathering data
from system resources, either physical (battery, processor, memory, network in-
terface, etc.) or logical (sockets, threads, etc.). SAJE supports several operating
systems: GNU/Linux, Windows XP, Windows 2000 and Windows Mobile 2003.

Implementing context adaptation policies with COSMOS consists in conduct-
ing two activities: (i) developing Fractal components for the context nodes
that are resource managers linked with SAJE and for the context operators, and
(ii) composing these components by using the Fractal ADL language. Fur-
thermore, as described in Section 3.2, context nodes are defined to be highly
configurable through numerous attributes (about ten attributes). The inherent
drawback is the complexity of the configuration of a graph of context nodes, such

Scalable Processing of Context Information with COSMOS 219

as the one presented in the example of Section 4.2 which contains about twenty
nodes. To address this complexity, we use FPath, a language inspired from XPath
and dedicated to the navigation into hierarchies of Fractal components.

A first version of COSMOS is available under the GNU LGPL license and can
be downloaded from http://picolibre.int-evry.fr/projects/cosmos.

6 Performance Evaluation of the Prototype

The objective is to confirm experimentally the appropriateness of the component-
based approach. Therefore, we make the distinction between the costs introduced
by the reification of system resources by the framework SAJE and the costs due
to the composition with COSMOS.

We have conducted performance measurements on a laptop PC with the fol-
lowing software and hardware configuration: 1.8GHz processor, 1GB of RAM,
Compaq IEEE 802.11b WL110 card at 11Mbps, GNU/Linux Debian Sarge with
the kernel 2.6.15, Java Virtual Machine Sun JDK 1.5 Update 6, and Fractal
implementation Julia 2.1.3 (none of the execution optimisations activated). The
results are presented in Table 1. Each test was run 10, 000 times in order to
obtain meaningful averages. A garbage collection and a warm-up phase occurred
before each run. The unit of measure is the millisecond. When the measured val-
ues are less than one millisecond, the iterations number becomes 1, 000, 000. The
configuration is the default one: passive nodes and non-blocking observations.

Table 1. Performances of SAJE and COSMOS

Observation (ms)

a SAJE Free memory Memory 0.038
COSMOS Memory manager PeriodicMemory 0.045

b SAJE Quality of the WiFi link WirelessInterface 14.0
COSMOS WiFi manager PeriodicWireless 33.8

c COSMOS Example of Figure 3 WhenCachingOffloading—default config. 163.7
COSMOS Example of Figure 3 WhenCachingOffloading—Figure 3 conf. 4.7

The first series of measurements (see Table 1-a) concerns the extraction of
the free memory information. With SAJE, the observation of the Memory object
corresponds to an access to the Unix /proc file system (present in RAM) and
to the initialisation of the data structures storing the information, that is to say
less than 1ms. The differences between the observations with SAJE and with
COSMOS (PeriodicMemory), which is evaluated to approximately 7μs, is the sum
of (1) the cost of the calls to Fractal components (crossing the membrane and
interception by controllers), (2) the extraction of context information from the
SAJE object, and (3) the filling of the DREAM message chunk via the message
manager component.

The second series of measurements (see Table 1-b) concerns the extraction
of the quality of the WiFi link. The observation of the WirelessInterface SAJE
object lasts longer than the observation of the Memory SAJE object because

220 D. Conan, R. Rouvoy, and L. Seinturier

the data of the WiFi interface are not present in RAM, but must be read from
the network device. The observation of a PeriodicWireless component lasts longer
since the context node extracts automatically all the available atttibutes (more
than 30).

The last series of measurements (see Table 1-c) is the observation of the
example of Figure 3 (component WhenCachingOffloading). It takes 163ms in the
worst case: Every component is non-blocking. If the components are configured
as presented in Figure 3, since the child components of WhenCachingOffloading
block the observations, the observation time of WhenCachingOffloading becomes
neglible (less than 5ms). This concludes that the component-based composition
of context data not only pertinent but also efficient while preserving the context
information accuracy.

7 Related Work

In this section, we compare COSMOS with the legacy frameworks dedicated to
context monitoring, such as Phoenix and LeWYS. Then, we compare COSMOS
with several middleware frameworks for context management.

Phoenix is a software framework for the observation of system resources for
distributed applications deployed on clusters [2]. The architecture of Phoenix is
composed of four parts: Observation agents, probes, broadcast primitives (into
local networks), and a tool library. Observation agents can configure the observa-
tion frequency and multiplex the observations (by adjusting the frequency to the
lowest requested value). Phoenix provides a dedicated language for describing
an observation: Observable resource identifiers, comparison operators, first or-
der logic and DELTA operators to measure the amplitude of variations. Phoenix
provides only elementary operators: No memory or threshold operators, format
translation, data merging, etc. However, the dedicated language approach for ex-
pressing observation requests could be used in the future evolution of COSMOS.
In addition, Phoenix does not support the easy introduction of new operators.

LeWYS is a middleware framework for the supervision of clusters [4]. Its ar-
chitecture encompasses probes that are deployed on all the computers of the
cluster and a distributed system for notifying events. Even if LeWYS is built us-
ing Fractal, it does not support the composition of context data. For example,
all the data retrieved by the probes are propagated without being filtered.

Context Toolkit is one of the first work on context management that was
based on event programming and widget concepts introduced by GUI (Graphi-
cal User Interfaces) [10]. In the same framework, all the following functionalities
are grouped: The interpreter for composing and abstracting context information,
the aggregator for the mediation with the application, the service for controlling
application actions performed on the context, and the discoverer that acts as
a registry. Following the same philosophy, interpretation and aggregation func-
tionalities have to be programmed in monolithic blocks: One interpreter and one
aggregator per application, independently of the number of widgets and the level

Scalable Processing of Context Information with COSMOS 221

of abstraction requested by the application. Finally, the management of system
resources consumed by treatments is not addressed.

MoCA Context Service architecture [8] defines an access interface, an event
manager, a context-type manager, and a context repository. The event manager
design highlights the need for technical services, called orthogonal services, to
improve performance. In addition, context data are typed and described using an
XML-based model that builds a type system implemented as Java objects. Sim-
ilarly to our work, the authors describe the need for using meta-information in
order to leverage performance and scalability. However, since the authors trans-
pose an ontology-based approach to an object-oriented one, the MoCA archi-
tecture does not separate the context management functionalities. For instance,
the source of context data (local or remote) is described via an attribute rather
than being described in the architecture. Contrariwise, with COSMOS, we apply
the component-oriented approach both at the context manager architecture level
and at the context node definition level. The XML-based model of MoCA is sim-
ilar to a component descriptor with its attributes. But, since COSMOS uses an
ADL, the specification becomes explicit and benefits from the expressiveness of
the language and its tools. Finally, the authors propose to partition the context
data space into views for improving the performance. In a component model
with hierarchy and sharing, this feature is automatically available.

MoCoA provides an environment for building context-aware applications for
ad hoc networks based on sentient objects [16]. Sentients objects have most of the
characteristics of components. The low-level inference treatments are organised
as data merging pipes. MoCoA only allows notifications, contrary to COSMOS
that add observations. Pipe treatments are complemented with inference ones
with facts and rules, which are inspired from artificial intelligence. The pipes
are logically enclosed in sentients objects, including for the control of system
resources’ consumption. But, contrary to COSMOS, MoCoA neither details nor
provides any means to externally specify these controls. Finally, the authors of
MoCoA express the useness of an ADL to describe the composition of pipes and
sentients objects as we propose in COSMOS.

The context manager of Draco [14] is organised around a database and an
ontology broker. The component-based approach is chosen for its ability to dy-
namically adapt the context management system to changing conditions of appli-
cations’ requirements and context devices. The objective is to deploy / undeploy
on demand functional context management components, such as filtering, history
or transformation. The drawback of this use of the Singleton design pattern for
functional context management services is that it does not scale. On the contrary,
in COSMOS, these fine-grained functional services are replicated and integrated
into context nodes when necessary. Concerning the ontology orientation, the
evaluation concludes (i) to the difficulty to define an optimal deployment due
to the difficulty to estimate of the processing time for all context management
activities, and (ii) to the difficulty to use an ontology broker on small devices.

In Le Contexteur [7], Contexteurs are software entities similar to data
components, and their meta-data (describing the data quality) as well as their

222 D. Conan, R. Rouvoy, and L. Seinturier

controllers (modifying the configuration) are available for both inputs and out-
puts. A Contexteur is a Java class that is associated to an XML descriptor. Thus,
the software framework builds, in an ad hoc manner, a container around the Con-
texteur component. This ad hoc component model is implicit and not configurable
(e.g., for managing system resources). For each Contexteur using at least an activ-
ity, the local resource consumption can not be controlled. Furthermore, the shar-
ing of context nodes supported by COSMOS is not addressed by Le Contexteur.
In addition, Contexteurs exchange control information in order to ask to stop or
force the data notification for example. However, given that there is no explicit
component model, it is impossible to introduce new configuration possibilities,
such as some new attributes or control modes. In COSMOS, the structure and
the life-cycle of components is finely managed by the Fractal controllers.

Last but not least, RCSM [17] is an object-oriented framework with an archi-
tecture similar to ours. Every context source (users, sensors, operating system,
remote hosts) is separated. But, the authors do not tackle the issues of the
synchrony of the treatments or of the control of system resources for context
management. PACE [12] presents a different architecture in which context data
are stored in a database. The meta-data (temporality, quality, etc.) are added
either to context data or to relations between them. The authors indicate clearly
that they did not have a look at issues such as scalability or performance. Con-
cerning context modelling, the same authors prone the object or the ontology
orientations as the two acceptable alternatives among the myriad of modelling
methods. With COSMOS, we add the component orientation, which raises a lim-
itation of the object orientation: A more formal specification of the dependencies
between context entities thanks to the usage of an ADL.

8 Conclusion

Ubiquitous environments put some constraints on the design and the implemen-
tation of applications. Among other requirements, applications for such environ-
ment must be highly adaptable. Before adapting, the decision making process
that leads to adaptation is a difficult issue for which few efficient solutions exist.
This process is based on gathering, analysing and treating vast amount of phys-
ical and logical data produced by the execution environment. In this article, we
propose the COSMOS framework for managing such context information.

The COSMOS framework introduces the notions of context nodes and context
policies (see Section 3). Context nodes are designed and implemented as soft-
ware components, and can be composed and assembled to form complex context
management policies. The goal of such an assembling is to drive the adaptation
of an application.

The COSMOS framework is architectured around three principles: the separa-
tion of context data gathering from context data processing, the systematic use
of software components, and the use of software patterns for composing these
components. The first principle allows proposing new scalable context manage-
ment architectures with several levels of cycles, each one being composed of
successive “gathering / interpretation / situations identification” phases. The

Scalable Processing of Context Information with COSMOS 223

second principle, software components, allows reusing more easily context nodes
and the processors in the context nodes. The third principle allows composing
rather than programming context management policies. For that, we have se-
lected, in Section 3.4, three well-know design patterns [11] that are recurrently
used when designing adaptation policies: the Composite, the Factory method,
the Flyweight and the Singleton design patterns. The novelty of our approach
is to use these patterns for composing software components which represent
context nodes and context processors.

Scalability has been a driving factor for the design of COSMOS. We believe
that several elements participate to this result: the composability brought by
software components, the fact that COSMOS is divided in three independent
layers, the fact that components can be shared and can have different properties
to reduce their intrusiveness (see Section 3.2) and that the execution overhead
have been kept as low as possible (see Section 6). The COSMOS framework is
implemented on top of the Fractal [3] component model and the DREAM
component library [13].

As a matter of future work, we plan to adopt three directions. First, we believe
that the COSMOS framework is one of the main services that lies at the core
of a platform for adapting distributed applications in a mobile environment.
We could therefore think of integrating COSMOS in such a platform. A second
direction concerns the composition of context management policies. The issue
is to be able to address situations where two or several policies have to cohabit
in a same platform for a same set of applications. As the intersection between
these policies may not be empty, it is then necessary to provide tools to detect
and solve the conflicts that arise between these policies. A direction that can be
investigated consists in defining a type system [1] such as the one existing for the
DREAM component library [13]. A related issue consists also in the possibility of
setting up repositories for context collector components in order to facilitate their
sharing. Finally, a third research direction consists in defining a domain specific
language (DSL) for designing the composition of context nodes and context
processors. Such a DSL could reuse ideas from the WildCAT [9] framework.

Acknowledgements

The authors wish to thank the anonymous reviewers and (in alphabetical or-
der) Djamel Belaïd, Sophie Chabridon, Bertil Folliot, Pierre Sens and Chantal
Taconet for their detailed reading and their numerous remarks on this paper.

References

1. Bidinger, P., Leclercq, M., Quéma, V., Schmitt, A., Stefani, J.-B.: Dream Types:
A Domain Specific Type System for Component-Based Message-Oriented Mid-
dleware. In: 4th ESEC/FSE Workshop on Specification and Verification of
Component-Based Systems, Lisbon, Portugal (September 2005)

2. Boutros Saab, C., Bonnaire, X., Folliot, B.: PHOENIX: A Self Adaptable Moni-
toring Platform for Cluster Management. Cluster Computing 5(1), 75–85 (2002)

224 D. Conan, R. Rouvoy, and L. Seinturier

3. Bruneton, É., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The Frac-
tal Component Model and Its Support in Java. Software—Practice and Ex-
perience, special issue on Experiences with Auto-adaptive and Reconfigurable
Systems 36(11), 1257–1284 (2006)

4. Cecchet, E., Elmeleegy, H., Layaïda, O., Quéma, V.: Implementing Probes for J2EE
Cluster Monitoring. Studia Informatica 4(1), 31–40 (2005)

5. Courtrai, L., Guidec, F., Le Sommer, N., Mahéo, Y.: Resource Management for
Parallel Adaptive Components. In: IEEE IPDPS Workshop on Java for Parallel
and Distributed Computing, pp. 134–141, Nice, France (April 2003)

6. Coutaz, J., Crowley, J., Dobson, S., Garlan, D.: The disappearing computer: Con-
text is Key. Communications of the ACM 48(3), 49–53 (2005)

7. Coutaz, J., Rey, G.: Foundations for a Theory of Contextors. In: 4th International
Conference on Computer-Aided Design of User Interfaces, pp. 13–34. Kluwer Aca-
demic Publishers, Dordrecht (2002)

8. da Rocha, R., Endler, M.: Context Management in Heterogeneous, Evolving Ubiq-
uitous Envrionments. IEEE Distributed Systems Online, vol. 7(4) (April 2006)

9. David, P., Ledoux, T.: WildCAT: a generic framework for context-aware appli-
cations. In: 3rd International Workshop on Middleware for Pervasive and Ad-hoc
Computing, pp. 1–7, Grenoble, France (November 2005)

10. Dey, A., Salber, D., Abowd, G.: A conceptual framework and a toolkit for support-
ing the rapid prototyping of context-aware applications. Special issue on context-
aware computing in the Human-Computer Interaction Journal 16(2–4), 97–166
(2001)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, London (1994)

12. Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.: Middleware for
Distributed Context-Aware Systems. In: 7th International Symposium on Distrib-
uted Objects and Applications, Agia Napa (Cyprus). LNCS, Springer, Heidelberg
(2005)

13. Leclercq, M., Quéma, V., Stefani, J.-B.: DREAM: a Component Framework for the
Construction of Resource-Aware, Configurable MOMs. IEEE Distributed Systems
Online, vol. 6(9) (September 2005)

14. Preuveneers, D., Berbers, Y.: Adaptive context management using a component-
based approach. In: 5th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems, Athens (Greece), vol. 3543, pp. 14–26.
Springer-Verlag, Heidelberg (2005)

15. Schroeder, B.: On-Line Monitoring: A Turorial IEEE Computer, pp. 72–78 (June
1995)

16. Senart, A., Cunningham, R., Bouroche, M., O’Connor, N., Reynolds, V., Cahill,
V.: MoCoA: Customisable Middleware for Context-Aware Mobile Applications. In:
8th International Symposium on Distributed Objects and Applications. LNCS,
vol. 4275, pp. 1722–1738. Springer, Heidelberg (2006)

17. Yau, S., Karim, F., Wang, Y., Wang, B., Gupta, S.: Reconfigurable Context-
Sensitive Middleware for Pervasive Computing. IEEE Pervasive Computing 1(3),
33–40 (2002)

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 225–238, 2007.
© IFIP International Federation for Information Processing 2007

Experiences from Developing a Distributed Context
Management System for Enabling Adaptivity

Nearchos Paspallis, Avraam Chimaris, and George A. Papadopoulos

Department of Computer Science, University of Cyprus
P.O. Box 20537, Postal Code 1678, Nicosia, Cyprus

{nearchos, cspgha, george}@cs.ucy.ac.cy

Abstract. Today, one can observe an ever increasing trend in the use of mobile
systems. This change inevitably affects the software running on such devices by
necessitating additional functionality such as context awareness and adaptive
behavior. While some developers design their systems to be fully self-reliant
with regard to context awareness, others aim for more synergistic approaches
by allowing context sharing across devices. This paper describes our experience
with first designing and implementing a basic context management system, and
then with extending it to allow context distribution. In the proposed
architecture, the developers define the context dependencies for their software
independently of the availability of context information in their corresponding
devices. An automated mechanism is then used to match these needs to the
corresponding providers, even when those reside across distributed devices.
This approach enables them to utilize shared context information at runtime
thus reducing both development efforts and hardware costs.

Keywords: Context-awareness, Middleware, Distributed architectures.

1 Introduction

Today, one can observe an ever increasing trend in the use and proliferation of mo-
bile systems. This change has inevitably affected the design and the implementation
of software running on such devices. For instance, additional functionality in terms of
context awareness and adaptive behavior is now a common feature desired and
frequently found in such systems. While the adaptive-behavior implies the capability
of a system to run in a number of different configurations or modes, context-
awareness refers to its ability to dynamically perceive the characteristics of its
surrounding environment. The ultimate benefit is provided in mobile systems which
are capable of monitoring and exploiting the contextual information, and infer
decisions on choosing the optimal adaptation. This process is guided by the aim for
maximizing the quality of the service as it is perceived by the users.

In this work it is assumed that an adaptive, mobile system monitors its environment
and dynamically chooses an optimal configuration, thus adapting itself on demand.
While the context information which is monitored can be theoretically of unbound
variability, in practice only a small fraction of the available context data is delegated
as input to the adaptation decision-making component. Naturally, the more context

226 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

information is available to such a decision maker, the better the decision can be. In
most context-aware systems, acquired information is retrieved from sensors or the
client side of services. Consequently, the available context information types are
restricted by the limited mobile device size and resources which render the hosting of
unlimited context sensors intolerable. This limitation highlights the importance of
enabling sharing of context information between distributed sources. In this way, the
distributed context sources can further eliminate the related costs (e.g. battery
consumption, memory use, etc.) while providing mobile nodes with richer context
information which otherwise would be impossible to have access to.

This paper describes the architecture of a distributed context management system
which is used to drive the adaptation reasoning process in the mobility and adaptation
enabling middleware (MADAM) [1, 2]. Besides the architecture design this paper’s
contributions also include a review of requirements for the design and implementation
of such a system, as well as a list of related experiences and findings.

The rest of this paper is organized as follows: First, section 2 describes the basic
aspects of context-aware systems, followed by section 3 which analyzes a number of
requirements for distributed context management systems. Then the proposed
architecture is analyzed in section 4, along with a description of its implementation.
Following that is a discussion of experiences and related work presented in section 5,
and finally, section 6 concludes with a review of the contributions of this paper.

2 Context Awareness

Context-aware computing is an area which studies methods and tools for discovering,
modeling and consuming contextual information. Such information can include any
information affecting the interaction of a user with a system, such as user location,
time of day, nearby people and devices, user activity, light or noise conditions, etc. A
more formal and widely used definition specifies context as “any information that can
be used to characterize the situation of an entity; an entity is a person, place, or
object that is considered relevant to the interaction between a user and an
application, including the user and application themselves” [3, 4].

Context can also be classified in more fine-grained categories: physical, computing
and user context information types [5]. The physical context type is related to
environmental factors which can usually be evaluated by using specialized hardware
mechanisms. The light, noise, and temperature are examples of physical context data
types. The computing context refers to the information which describes the resources
available in the computing infrastructure. This includes information such as the
network connectivity and its characteristics (e.g. bandwidth, latency, etc.), nearby
resources (such as printers, video projectors, etc), and details concerning the memory
availability, the processor use, etc. Finally, the user context refers to the user’s profile
by focusing on the user needs, preferences, mood, etc. For example these can include
information concerning the user’s occupation (e.g. driving, studying, etc.) or the
user’s choice for preferring, say, to use a desktop computer rather than a PDA while
at work.

Furthermore, it is argued that any system that aims to be minimally intrusive must
be context aware, in the sense that it should be cognizant of its user’s state and

 Experiences from Developing a Distributed Context Management System 227

environment [6]. In other words, context-aware mobile systems are expected to utilize
such information in order to adapt their behavior, based on a predefined set of
adaptation rules. These rules are usually monitored by a system which dynamically
adapts the system’s operation based on the contextual information sensed.

In this paper, the context awareness is treated as an independent concern, where the
applications can separately and independently register for particular context change
events, without having to be involved in the collection or management of contextual
information. Because of this separation of concerns, it is possible to treat the context
awareness support mechanism independently of the adaptation mechanism. I.e. from a
developer’s point of view, the two mechanisms can evolve independently, thus
improving on both the development and the maintenance effort required.

3 Requirements for Distributed Context Management

The main responsibilities of a context-aware, adaptive mobile system include
acquiring context information, reasoning on the acquired information, and performing
adaptations as a result of these changes. In many cases the acquired information is
retrieved locally (e.g. through attached sensors) but frequently this information is
insufficient for performing the required adaptation reasoning. In a distributed context
management system, additional context information can be shared among a set of
distributed mobile devices. This enhances the process of making adaptation reasoning
decisions by offering context information which would otherwise not be accessible.

3.1 General Requirements

The implementation of a distributed context-aware framework should address many
of the requirements of traditional distributed systems such as heterogeneity, mobility,
scalability, and tolerance to system and network failures. Heterogeneity is required
because systems are inevitably developed by different teams and target many different
platforms. However, these systems are still expected to collaborate with each other
and share context information. Distributed context management systems are also
naturally expected to enable mobility, and thus it should be possible to disseminate
context information independently of the communication protocols, the underlying
network infrastructure or the location of the nodes. The requirement for scalability is
a natural consequence of the distributed nature of the desired context management
system. This requirement dictates that the performance of the system is not severely
downgraded as the number of participating nodes increases. Finally, and although not
critical from a functional point of view, the ease of deployment and configuration is
also an important requirement for such a system. These requirements were considered
in our implementation, as it is discussed in sections 4 and 5.

3.2 Requirements for the Distribution of Context

Typical context management systems adhere to the publish/subscribe model, where
providers asynchronously provide their information, and clients subscribe for
notification when such events occur. This approach however, is further extended in

228 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

the case of distributed systems, as the providers and the subscribers can reside on
different, network connected nodes. The additional requirements are:

Service Discovery: The service discovery requirement refers to the need for
discovering context providers (i.e. nodes capable of sharing context information).
Suitable approaches include two main categories: centralized and ad-hoc service
discovery. Centralized approaches include services which provide context at well
known locations (e.g. a URL), or advertise their capabilities in directories. Contrary to
these, ad hoc approaches utilize services which dynamically form partnerships for
context exchange. Their communication can be realized by using combinations of
infrastructure-based, wireless and ad hoc-based networks.

Modeling and Semantics: The context modeling refers to the requirement for
formatting the information so that it encapsulates both the required data and metadata.
Context modeling is important for guaranteeing compatibility among the possibly
heterogeneous devices (i.e. mobile nodes, context sensing mechanisms, etc.). This is
particularly important in ad-hoc configurations, where the nodes participate to context
exchanges without being a priori aware of each other, and consequently of the
methods they use to abstract (model) and interpret (semantics) context information.

Scope and Privacy: When sharing context information in a distributed environment,
it is important to define its scope. For example, context information which is limited
to local use should be prevented from being generally distributed. Rather, suitable
methods should be used to limit its dissemination within a local area in which it is
more likely to be valid. As most of the context information is expected to be of local
interest only, this requirement seeks to ensure that an explosion of context
information is prevented and rather a form of localized scalability is enabled. On the
other hand, the dissemination of context information should also be controlled so that
no sensitive information can be leaked to the wrong hands. Similar to the context
scope, the privacy is another important parameter which must be taken into account
when defining the access to context information. In particular, the access to sensitive
context information must be explicitly defined so that only the context information
which is intended to be public is shared with other devices.

4 The Architecture of the Context Management System

The main concept of the implemented architecture is the separation between context
clients and context providers [7,8]. In this respect, all nodes act as both context
providers and context consumers, as part of a membership group which is formed
using a loosely coupled protocol. Furthermore, while individual nodes are free to
access context information from any possible provider (i.e. even context servers
located at remote geographical locations), it is nevertheless assumed that in most
cases context sharing is limited to a local area only. In this respect, the locality refers
to groups formed by nodes which can directly communicate with each other, e.g. over
a wireless link by forming an ad-hoc WiFi or Bluetooth network (i.e. a piconet).

 Experiences from Developing a Distributed Context Management System 229

Fig. 1. Distributed Context Management System Architecture

This approach has the important advantage of assigning higher importance to local
context and consequently enabling localized scalability [6]. The first one refers to the
fact that it is more likely that two neighboring nodes will share a common interest on
the same context as opposed to nodes at different geographical locations. This is true
for example in most pervasive computing applications where applications aim to
utilize the infrastructure which is embedded in the surrounding environment. In
another example, it would be more likely that an application would be more interested
in the temperature information provided by nearby nodes (and thus residing in the
same environment) as opposed to the temperature information provided by distant
nodes. Second, localized scalability is achieved by preferring local sources (and
respectively consumers) for sharing context information with. In this approach, the
use of mainstream links is avoided as most of the communication is carried out over
local (i.e. direct) network links. The following paragraphs describe the basic ideas of
this approach, along with the algorithms required to support it.

4.1 Context Management in Centralized Environments

As it has already being mentioned, the implemented architecture is based on the
separation of roles between context providers and consumers [7]. Even if all nodes
can interchangeably act as both clients and producers, at the underlying layer there are
specialized architectural components which can either support context production or
consumption. These components are the Context Sensors that are used to produce
context, and the Context Listeners which can be registered to listen for context
changes (Fig. 1). When the monitored context type changes, the listeners inform the
linked applications (e.g. Application A is informed for context changes for the
monitored context of Listener A and Listener B). The Context Sensors generate
context elements that are stored in local repositories. This centralized architecture is
quite simple and is based on the requirements defined in the context-aware section.

4.2 Membership and Distributed Context Management

In a distributed context-aware system the intention is for the information in the local
repositories to be shared between nodes. In order to enable this, we implemented a
loosely coupled communication protocol between the distributed nodes which is
based on the transmission and handling of heartbeat messages. This architecture is
based on the requirements that were identified in section 3. In the analysis of the

230 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

required communication protocol we discovered that not all context information was
suitable for sharing. For example, context information describing the battery status of
a device is generally useless to other, neighboring devices. Furthermore, as per the
privacy requirement, we detected a need for excluding some context information from
being shared. In this respect, two properties were defined for characterizing the
context element types: scope and privacy. The first property refers to whether the
context element value is appropriate for distribution or not. The possible values that
can be assigned to this property are: public (i.e. can be distributed without
restrictions), local (i.e. useful only within a small range around the providing node;
such information is typically directly communicated across devices) and private
(meaningful only within the device itself). The privacy property describes how
sensitive is the context information and consequently whether it is suitable for sharing
or not. This property can be assigned two values: public (i.e. the information can be
shared unrestricted), and private (i.e. the information is not subject to distribution
outside the local device).

Once the context information is appropriately annotated with properties, the next
step is to define an appropriate mechanism to first enable the dynamic discovery of
nodes, and second to physically enable information sharing among them. In this work,
we have purposely aimed for a completely ad-hoc approach, which has the benefit of
not requiring the set-up of context servers and, additionally, it provides better access
to neighboring information which is much more likely to be relevant to collaborating
nodes. The used protocol is based on a loosely coupled method, which is enabled by
periodically broadcasting and handling heartbeat messages. Furthermore, the overall
system is based on a push/pull hybrid approach. While pull approaches attempt to
retrieve context information without a priori being aware if the requested data is
available or not, push approaches proactively communicate context information to
peer nodes regardless of whether the context was requested or not. In our hybrid
approach, the distributed context is transmitted (pushed) from the providing nodes to
the requesting ones. Additionally, the requesting nodes do not keep track of the
remotely provided context, but rather they notify nearby nodes of their needs.

The distributed context needs are defined inside the heartbeat messages which are
broadcasted by the underlying network layer. The broadcasted messages also encode
the types of the desired context data. When received, the context data is decoded to
form a list of the required values by all nodes in the neighborhood. Then, from an
individual node’s point of view, requested context types that are available are
subsequently broadcasted to the local network (push approach) also by being encoded
in the corresponding heartbeat messages that are periodically broadcasted. On the
receivers’ side the heartbeats are decoded and the corresponding context values are
used to generate a local context change event, as if the changes were sensed locally.

In practice, the push mechanisms are more efficient than their pull counterparts, as
the pull mechanisms need local meta-data in order to select the proper provider to
request for, and to construct the request message. In push architectures, there is no
need to keep local information about remote providers because as soon as a nearby
node receives a context request an appropriate heartbeat message is immediately
constructed and communicated back to the requestor.

We argue that this architecture satisfies the detected required features. The use of a
broadcasting mechanism for the heartbeat messages reduces the communication

 Experiences from Developing a Distributed Context Management System 231

overhead (especially as the required context information is piggy-backed into these
messages). Another alternative would be to have nodes announcing their offered
context information, but this imposes significant overhead for updating local tables
mapping context offerings to context requestors. Instead, in the proposed architecture
there is no need for storing such information because the requests are handled directly
by context producers. Consequently, this architecture provides the benefits of better
scalability and consistency, while at the same time requiring fewer resources.

This architecture is heavily based on the periodic broadcast of special heartbeat
messages which serve two purposes: first they are used to update the membership
status of the individual nodes and they communicate basic information about context
required by the sender. Additionally, the heartbeat messages are used for transmitting
context change events from providing nodes (using the discussed push approach) to
the requesting nodes. This approach also enables a loosely-coupled synchronization
method which is based on periodic broadcast of heartbeat messages. These messages
are intended to both form and maintain a membership group, as well as to update the
individual nodes of the context information required by the senders. Similar protocols
have also been proposed and tested in commercial environments (e.g. the Bonjour [9]
and the Bluetooth technologies [10]). In the proposed approach however, the aim is
specialized on the exchange of context information rather than of general data.

The membership manager: In this architecture, the most important component is the
Membership Manager (see Fig. 1). The Membership Manager is part of the context
management system of the MADAM middleware. Its main responsibility is to
periodically multicast the heartbeat messages and to handle the received ones.

The periodic multicast of heartbeats aims at achieving mainly two goals: first, to
enable the formation of a loosely coupled membership group, and second, to inform
the neighboring nodes (i.e. the group) about possible context needs which cannot be
locally satisfied. Additionally, the heartbeats are also used to encapsulate context data
so that they can be shared with other nodes. On the receiving side, the membership
manager exploits this information exactly for forming this loosely coupled group and
for decoding possible context change events which are of interest to the local node.

The membership manager’s functionality is supported by two table-like data
structures: the membership table which is used for managing the membership status
and the context requestors table to maintain the context requests from the remote
nodes. When a heartbeat message is received, the membership table is updated with
the provided information. For example if the heartbeat was sent by a node which is
not already present in the membership management table, a new entry is created for it.
At the same time, an event is generated indicating the addition of the new member. If
the node is already present in the membership table, then its context requirements are
examined for changes, and appropriately update the context requestors table. In this
way, the requesting nodes notify the nearby context-provider nodes of their newly
required context in order to adjust their remote context listeners.

In order to detect when a node has left the membership, a simple algorithm is also
used which is based on a predefined, globally agreed timeout period: the heartbeat
interval. In simple words, this algorithm periodically checks the table with the current
members and ensures that all members have a recent heartbeat timestamp. When a

232 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

Fig. 2. Sequence diagram of a typical message interchange in a group membership

member misses a predefined number of consecutive heartbeats, it is assumed to have
left the group. At that point, an appropriate event is generated indicating the fact that
the member in question has left the group. Because the departed node was possibly
also included in the context requestors table, an appropriate update takes place there
too, so that all context entries requested by that node only, are removed.

As a result of the heartbeat messages, two main events are triggered by the
corresponding membership management mechanism: the new member added event
and the existing member left event. An additional event concerning context updates
(pushed context changes) can also be raised: the context updated event. All events
encapsulate information about the identity of the node involved, as well as
information on its requested context. To better explain the used algorithm, the
following paragraphs explain how these events are handled by the context manager:

 Experiences from Developing a Distributed Context Management System 233

• New member added event: This type of event is generated when a heartbeat
message is received from a node not previously registered with the membership
manager. Once detected, the new node is also automatically considered for its
needed context. For each remote requestor, a local context listener counterpart is
instantiated. This listener automatically pushes context information to the remote
requesting node when the respective context changes (sequence 1 in Fig. 2).

• Existing member left event: This event is triggered when a node is detected to
have left the membership group. Each heartbeat timestamp is updated whenever a
heartbeat message is received from the specific node. In this way, when the
heartbeat timestamp of a node in the context providers table is found to be
outdated, the corresponding node is assumed to be disconnected. At that time, the
listeners that are pushing information to this remote node are considered obsolete,
and thus are removed from the table (sequence 4 in Fig.2).

• Context requirements updated event: Finally, a context change event occurs
when an existing node is found to have changed its needed context. In that case,
the membership manager iterates through the context requestors table and updates
the corresponding entries (i.e. removes obsolete entries and add newly required
ones). This is depicted by sequence 3, in Fig. 2.

Besides generating these events, the membership manager also reacts on them, by
adding and removing context listeners (to itself). The actual context information is
communicated through the heartbeat messages, as piggy-backed context information.
Thus, beyond updating the membership status when a heartbeat is received, the
membership manager also parses the heartbeats and passes possible context change
events to the context repository (see Fig. 1) for further distribution.

4.3 Implementing the Architecture

The described architecture was designed and implemented as part of a broader
adaptation enabling middleware (MADAM). The system was implemented in the Java
language and tested on both a laptop computer running the Windows XP operating
system and an iPAQ PDA computer running the Windows Mobile operating system.
Regarding the JVM, in the first case we used the mainstream implementation
provided by Sun Microsystems, while in the case of the PDA we used the CreMe
JVM by NSI.com. Finally, the MADAM middleware provides a context visualizer (a
simple context client) which allows a user or a developer to dynamically monitor and
edit (simulate) the context information (shown in Fig. 3, when deployed on a PDA).

During the implementation, some of our main goals were interoperability, platform
independence, and extensibility. To facilitate the first two goals, we used the Java
system while refraining from using native (i.e. platform dependent) libraries.
However, lower-level layers of the MADAM middleware (and especially the resource
management component) do extensive use of native libraries, which are platform-
dependent (e.g. two different implementations are made available by the MADAM
consortium targeting both Windows-based PCs and PDAs). However, extensive
coverage of the resource management layer is beyond the scope of this paper. The
interested readers are rather referenced to the MADAM website [1].

234 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

Fig. 3. The left diagram depicts the context view in the case of a single node, while the right
diagram depicts a situation where two individual nodes form a membership

For the extensibility goal, we used an approach which allows to interchangeably
selecting different networking technologies. In this respect, we defined a Broadcast
Service interface which provides methods for broadcasting generic, serializable
messages and for subscribing (and unsubscribing) for the reception of such messages.
The membership manager is only aware of this interface, thus allowing a developer to
provide different implementations.

At this time, we have tested a default implementation of the broadcast service
which has successfully demonstrated message broadcasts on both wired and wireless
networks, on both Windows XP and Windows Mobile-based systems. Furthermore,
we developed a simulated version of this service, which uses plain TCP
communication messages and a simulation hub, with the intention of enabling the
middleware to function even behind firewalls or simply when on devices which do
not support multicasting. Finally, a Bluetooth-based implementation is also underway.

5 Experiences from the Development of the Context System

The process of first designing a basic context management system and then extending
it to enable distributed context sharing has provided us with many valuable insights
that we attempt to document in the following paragraphs:

Non-functional nature of context should remain as such: When designing context
aware systems, the aim is usually to optimize the operation of the system, rather than

 Experiences from Developing a Distributed Context Management System 235

extend its capabilities. For example, an intelligent agenda could exploit GPS
information so that when a “lunch at 12pm” entry is activated, a list of nearby
restaurant options, compatible with the user's taste, are automatically displayed to
inform the user about them. However, in this case the availability of context
information (i.e. GPS coordinates) is completely optional and does not prevent the
software from performing its basic goals. Rather, it simply limits its functionality to
some extent, with also a possible decrease in the quality of the offered service. It has
been our experience with the development of the context management system, but
also with the development of the MADAM adaptation-enabling middleware, that the
context information should be used as such and never being allowed to become a part
of a critical path, i.e. its absence should never cause a system to stop functioning. In
this respect, the MADAM middleware suggests the designers to provide a set of
possible adaptations (i.e. configurations) for their applications, along with a set of
properties and utility functions which always allows the computation and the selection
of a minimal configuration, regardless of the availability or absence of (possibly
distributed) context information. This experience is in accordance to a common
distributed computing fallacy1: the network is reliable.

Modeling of context should provide support for distribution: While designing the
basic context management system, one can be easily mislead to the assumption that
the context information is both generated and consumed at the same node. However,
in real distributed systems, sharing of context information imposes additional
requirements for identifying both the nature and the origin of the context information.
For example, information about the memory availability of a node becomes useless,
unless the actual node association is explicitly or implicitly defined. This also implies
that unless the context information is generated and consumed by the same system
(e.g. the MADAM middleware), then a set of semantics metadata must accompany
the actual context data to allow for better optimization of the context data (e.g. the
metric system used for the measurements, the methods used to acquire the data, and
even the accuracy of the communicated information). Last but not least, distributed
dissemination of context data requires that the distributed peers trust each other and
they are capable of securing that the communicated data is handled as it is intended.

Plug-and-Play architecture support for context sensors: Assuming that a device
will require a constant set of context information types is erroneous. In practice,
different applications are dynamically started and stopped. Additionally, in the case of
adaptive, component-based applications different variants of the same application
might impose different context requirements. Having the maximum context
information provided at all times is not an optimal solution, especially in mobile
systems where resource consumption is an important concern! In this respect, the
design of a plug-and-play architecture enables dynamic reconfiguration of the context
manager’s architecture, which can greatly improve the system’s efficiency and
autonomy. In our context system’s architecture, we maintain a dynamically updated
list with the registered context listeners (consumers) along with their corresponding

1 http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing.

236 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

needs. This allows the system to periodically and dynamically evaluate the situation
which concerns the need for context information and dynamically activate and
deactivate the corresponding context sensors. Additionally, while some of the sensing
functionality (such as the memory and CPU monitoring) can only be embedded in the
middleware system, others depend on software and hardware sensors, both native to
the device and newly added ones. For example, a system might be originally designed
with a GPS device only, but in the future it might be equipped with a temperature and
barometer sensor as well. Such an addition should not require any updates to the
middleware, but simply the addition of new software context sensors which would
make the new information available to the middleware as well. This is combined with
the general middleware’s pluggable architecture which allows dynamic loading and
unloading of applications and components together with the corresponding (software)
context sensors and reasoners. In effect, this enables the context system to extend its
domain of covered context information at runtime while at the same time conforming
to the actual needs of the hosted applications.

6 Related Work and Conclusions

A plethora of related work studies both centralized and distributed issues of context
management. This section discusses a number of achievements established already,
but also detects open problems which are not addressed by existing approaches yet.

Centralized context-aware systems use a local service which provides applications
with contextual information. Such infrastructures encapsulate these services as part of
a middleware which acquires raw contextual information from sensors and provides
interpreted context to applications via a standardized API. Furthermore, the
middleware is assigned to monitor particular context changes and dispatch relevant
events to interested applications when required.

In contrast to centralized approaches, distributed context-aware applications allow
the generation of context information at several locations, thus avoiding potential
bottlenecks and unnecessary hardware duplication. Despite the fact that decentralized
architectures increase the communication cost, they are more resilient to errors as they
do not require a central server to maintain the context information.

An approach which is partly based on message multicasts is described in [12]. In
this approach clients broadcast their location queries to all the members of a group
and interested parties anonymously listen to the queries. When they match a query
and their privacy policy allows it they reply to the query. Just like in our approach, the
main disadvantage lies in the increased computation and communication cost. Unlike
that approach though, our proposed mechanism aims at limiting the communication
cost by minimizing the heartbeat message size. Furthermore, both the computation
and communication costs can be minimized by increasing the heartbeat interval if that
can be tolerated by the applications. Finally, the computation cost is further limited by
using the context update timestamp which prevents the nodes to perform unnecessary
computations when there are no context changes encoded in the heartbeat.

The Context Toolkit [13] provides a component framework for acquiring and
handling context using three key abstractions: widgets, interpreters, and aggregators.

 Experiences from Developing a Distributed Context Management System 237

The context widgets are the most important components of this framework because
they provide applications with access to the context information while hiding the
details of context sensing. The context interpreters convert or interpret context to
higher level information and the context aggregators collect context relevant to
particular entities. Similar to our approach, the Context Toolkit provides support for
storing historical context data, and then reusing them to estimate their value trend.

Other systems, like Jini [14], use coordination model infrastructures to implement
well-formed shared repositories. This technology is usually used in the background,
such as for example in the Smart Map project [15], which enables position-aware
applications by using the Jini technology for implementing a registry. The registry is
used by service providers to register themselves for context availability and the
service consumers use the registry to discover them. The Context Fusion Networks
(CFN) [16] project is implemented as a context-aware middleware which handles
context information by realizing sources, sinks and channels. The context sensors are
represented by sources because they are responsible for constructing contextual
information. The applications which use this information are represented by sinks.
Furthermore, more recent approaches exist which aim at enabling generic data sharing
between neighboring devices. A notable approach is described in [17] where support
is provided for developing efficient solutions for sharing data in the neighborhood.

In contrast to most of these approaches, which do not explicitly tackle fault
tolerance, our approach provides limited fault tolerance. As the context manager has a
minimum state, any failures can be tolerated by simply re-instantiating the context
manager and allowing some time for the corresponding context producers and
consumers to recover by processing their periodic messages. However, our approach
is not tolerant to malicious attacks such as message flooding, which is a common
limitation of broadcasting-based approaches. Finally, unlike most other works, our
approach implements and promotes localized scalability as an effective measure to
optimize the consumption of resources and maintain the system performance.

In conclusion, this paper proposes a distributed context management mechanism
which aims at driving the decision making in the adaptation enabling middleware
(MADAM). We have detected a number of both general and more specific
requirements imposed by the distribution aspect. In this respect we have proposed an
approach which is based on the periodic communication of heartbeat messages for
forming loosely coupled membership groups and for advertising their required
context. We argue that this approach satisfies the detected requirements to a great
extend. Furthermore, this architecture has been implemented, tested, and evaluated in
real pilot applications, on both resourceful (laptops) and small (PDAs) computers,
with significant success. Further work is underway, aiming at specifying a more
structured context model, as well as extending its application domain to ubiquitous
computing (i.e. embedded in addition to mobile devices).

Acknowledgments. The authors would like to thank their partners in the MADAM-
IST and the MUSIC-IST projects and acknowledge the financial support given to this
research by the EU (6th Framework Programme, contract numbers 4169 and 35166).

238 N. Paspallis, A. Chimaris, and G.A. Papadopoulos

References

1. IST MADAM (Mobility and Adaptation Enabling Middleware), http://www.ist-
madam.org

2. Floch, J., Stav, E., Hallsteinsen, S., Eliassen, F., Gjørven, E., Lund, K.: Using Architecture
Models for Runtime Adaptability. IEEE Software 23(2), 62–70 (2006)

3. Dey, A.: Providing Architectural Support for Building Context-Aware Applications, PhD
Thesis, College of Computing, Georgia Institute of Technology, pp. 170 (2000)

4. Dey, A.: Understanding and Using Context. Personal Ubiquitous Computing 5(1), 4–7
(2001)

5. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research, Technical
Report: TR2000-381 Dartmouth College, Hanover, NH, USA (2000)

6. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges, IEEE Personal
Communications Magazine, pp. 10–17 (2001)

7. Mikalsen, M., Paspallis, N., Floch, J., Stav, E., Papadopoulos, G.A., Ruiz, P.A.: Putting
Context in Context: The Role and Design of Context Management in a Mobility and
Adaptation Enabling Middleware, International Workshop on Managing Context
Information and Semantics in Mobile Environments (MCISME’06). In: conjunction with
the 7th International Conference on Mobile Data Management (MDM’06), Nara, Japan,
May 9-12, 2006, pp. 76–83. IEEE Computer Society Press, Washington, DC (2006)

8. Paspallis, N., Papadopoulos, G.A.: An Approach for Developing Adaptive, Mobile
Applications with Separation of Concerns. In: 30th Annual International Computer
Software and Applications Conference (COMPSAC 2006), Chicago, IL, USA, Sept.
17-21, 2006, pp. 299–306. IEEE Computer Society Press, Washington, DC (2006)

9. Bonjour: Connect Computers and Electronic Devices Automatically without any
Configuration http://images.apple.com/macosx/pdf/MacOSX_Bonjour_TB.pdf

10. Draft Bluetooth Core Specification v2.1 + EDR https://www.bluetooth.org /spec/
11. Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K., Goldberg, D., Ellis, J., Weiser,

M.: An Overview of the PARCTAB Ubiquitous Computing Experiment. IEEE Personal
Communications 2, 28–43 (1995)

12. Spreitzer, M., Theimer, M.: Providing location information in a ubiquitous computing
environment. 14th ACM Symposium on Operating Systems Principles, Asheville, NC,
USA, December 5-8, pp. 270–283. ACM Press, New York (1993)

13. Dey, A., Salber, D., Abowd, G.: A conceptual framework and a toolkit for supporting the
rapid prototyping of context-aware applications. Human Computer Interaction 16(2-4),
97–166 (2001)

14. Sun Microsystems, Jini Network Technology, http://www.sun.com/software/jini/
15. Urnes, T., Hatlen, A., Malm, P., Myhre, O.: Building Distributed Context-Aware

Applications. Personal Ubiquitous Computing 5(1), 38–41 (2001)
16. Chen, G., Li, M., Kotz, D.: Design and implementation of a large scale context fusion

network. 1st Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous), Cambridge, MA, USA, Aug. 22-25, 2004,
pp. 246–255. IEEE Computer Society Press, Washington (2004)

17. Lachenmann, A., Marrón, P.J., Minder, D., Saukh, O., Gauger, M., Rothermel, K.: EWSN
2007. LNCS, vol. 4373, pp. 1–16. Springer, Heidelberg (2007)

Towards Context-Aware Web Applications

Po-Hao Chang and Gul Agha

University of Illinois at Urbana-Champaign,
201 North Goodwin Avenue, Urbana IL 61801, USA

{pchang2, agha}@cs.uiuc.edu

Abstract. In order to guarantee certain levels of QoS, a Web application
needs to adapt itself to different execution contexts. However, because
of the lack of coordination support in Web platforms, service providers
respond to the challenge by simply providing multiple versions of a Web
application, one for each context. We argue this top-down approach is
neither efficient nor scalable: developing a context-specific application re-
quires considerable effort and expertise while the ever-changing Internet
never stops generating interesting contexts which can be exploited for
better deployment. As an alternative, we propose a three-layer, bottom-
up approach to building context-aware Web applications. At the bottom
layer, we characterize a context-specific Web application with a partic-
ular component distribution plan which provides details for composing
individual objects. In the middle layer, recursively defined configurations
provide a bridge which relates high-level context features to low-level
component distribution properties, where a configuration is a combina-
tion of configurations and/or component distribution properties. At the
top level, a context management system selects desirable configurations
according to the execution contexts.

1 Introduction

Evolving from its original mission of content delivery, the Web has become a
gateway of assorted interactive applications: people access emails, shop online,
trade equities, manage accounts and even remotely control home appliances us-
ing various Web applications. Unlike its typical standalone and distributed peers,
a Web application encounters heterogeneous execution environments and numer-
ous, unpredictable circumstances in its deployment. From the early days of the
Web, developers identified the need to differentiate execution contexts: it was
common for a Web application to have one version with HTML frames and
another without. Context differentiation has become more critical as the Web
has evolved: new crop of context-specific versions such as broadband, JavaScript-
enabled, HTML only and low graphics can be found in many Web applications.

In most cases, these versions are built in a top-down fashion: that is, given
a context, the programmer exploits its features and develops a specific version
accordingly. However, the development and maintenance cost of multiple versions
is always expensive, and in the case of Web applications, this approach is fragile
in two ways:

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 239–252, 2007.
c© IFIP International Federation for Information Processing 2007

240 P.-H. Chang and G. Agha

1. Web applications are usually evolutionary in their life cycles. A minor change
in the application requirement may result in a re-evaluation of features to
be exploited in the contexts of interest.

2. The domain of interesting contexts is changing. Some contexts have fallen
into disuse and others are gaining sufficient momentum to require particular
attention. Since the future trend is hardly predictable, not much of existing
code can be readily reused.

We believe a bottom-up approach is a more feasible way to build and manage
a context-aware Web application. This is motivated by the following observation:
no matter how many versions the application supports, there are some elements
in common, such as its core application logic. We model a Web application as
a composition of distributed objects: the composing structure and the functions
of individual objects characterize the application. Instead of building a mono-
lithic context-specific version from scratch, the developer picks and/or adapts
composing objects with desired attributes, for example, implementation technol-
ogy, execution location and deployment policy, to fit for the context of interest.
The idea is similar to Web styling sheets [13, 7]: a customized presentation of a
document can be achieved by supplying a specific style sheet.

The ability to customize a Web application through object annotations is
just on the halfway to context-aware Web applications: the customizable appli-
cation requires human intervention (meta-programming) to adapt into contexts.
To be truly context-aware, the application needs assistance from a context man-
agement system to automate this process. The goal of the system is to generate
detailed deployment plans based on the context features at runtime. However, us-
ing straight-forward reasoning from context features to desired object attributes
complicates policy-design and suffers similar difficulties to those described above.
We use modularity to address the problem: a full deployment plan is decomposed
into sub-plans, each of which determines a set of closely-related object annota-
tions, and a policy associates a context feature to one or more sub-plans only. A
full deployment plan can be decided as the context management system applies
the policies applicable to an incoming context.

In this paper, we describe a software system to support context-aware Web
applications. Our system follows the bottom-up approach and enables a Web
application to adapt its component distribution to different execution contexts.
The rest of this paper is structured as follows: Section 2 provides a compre-
hensive background of the problem and an overview of our strategies. Section 3
introduces a component framework supporting customizable Web applications
through annotating composing objects. In section 4 we present a structural and
parameterized representation of related annotations akin to potential context
features. Section 5 describes a context management system which follows user-
defined policies to generate context-specific deployment plans from applicable
object annotations – and thus makes Web applications context-aware. We con-
clude the paper with a discussion in the final section.

Towards Context-Aware Web Applications 241

2 Overview

Web applications are inherently distributed: they require cooperation between a
server and a client in order to accomplish their tasks. We argue that component
distribution, and particularly execution location and loading policy, has a strong
impact on the performance of Web applications in different contexts. Therefore,
we propose enabling a Web application to adapt its distribution to the execution
context. We first motivate the problem, discuss related work, and outline design
strategies.

2.1 The Need for Context-Aware Web Applications

The goal of Web applications is to be accessible regardless of the platform a client
is executing on. However, limitations in the capability of a client restricts what
object distributions it can support: for example, a thin client cannot perform
complex computing tasks and has limited control over application loading. The
limitations posed by a thin client simplify the problem of object distribution:
there are no choices to be made in determining the component distribution.
However, as more and more clients support AJAX [8] Web applications–which
require a full-fledged computing platform in the client–component distribution
becomes an important factor in ensuring certain levels of QoS. The examples
below illustrate how an execution context may favor certain distribution plans.

Location: For computing components which require no input from the server
and consume few CPU cycles, such as a unit converter or a mortgage calculator,
it is preferable to deploy them in the client both for a faster response time
and to create less workload in the server. In other cases, the best location is
not always clear: a CPU-intensive component which takes input from a backend
data source is usually better allocated in the server because JavaScript is not an
efficient way to do the computation and bringing data across the Internet is a
significant overhead; however, in cases where the server CPU is extremely busy
but the server is less stressed in I/O and bandwidth, it is better to shift the
component to the client. A case of this sort that we have seen in practice is a
component which extracted excerpts of documents based on a user’s query. The
computation consumes many more CPU cycles than searching and fetching the
documents, although it still finishes in milliseconds when the server is lightly
loaded. When the server is busy doing multiple tasks (e.g., processing other
requests or indexing documents), it can take dozens of seconds to return the
excerpts; in such a context, it is more efficient to deploy the component in the
client.

Timing: Many user interface controls, such as layered menus, list boxes and
detailed information panels, have multiple levels of presentation. These compo-
nents can be preloaded as their containers load, or loaded on demand when a
user’s action explicitly requires it. Preloading client components provides better
response time but wastes bandwidth: some of these components are never used.
We have investigated the effect on a TV listing application; preloading all the

242 P.-H. Chang and G. Agha

detailed information consumed double the bandwidth compared to loading on
demand. A smarter solution is to exploit the user’s profile: if certain preference
can be identified, the application preloads only frequently used components. In
this case, the preferable distribution depends on the current network utilization
and identifiable usage patterns.

2.2 Problem Analysis and Related Work

It is desirable to make Web applications context-aware. Specifically, these appli-
cations require:

– The ability to adapt themselves to specific contexts of their deployment.
– The potential to evolve under widespread change in both execution environ-

ment and patterns of usage.

There are quite a few systems supporting context-aware applications under
specific assumptions. Although their design concepts and principles can be ap-
plied to Web applications, there are several difficulties in using these systems in
the domain of Web applications. We describe the difficulties below.

A key element of context-aware applications is adaptability. The execution
environment of Web applications is heterogeneous: clients and servers usually
employ incompatible technologies and assume different roles, which complicates
the process of adaptation. Several research projects [15, 2, 19, 14, 9, 17, 16] have
been able to support location-transparent application development in distributed
platforms; some of them are targeted to Web applications. One limitation in these
systems is that the adaptability is restricted to component execution location:
component distribution timing, which is crucial in many Web applications, is
missing.

Another common limitation is in the mechanism to express and enforce de-
ployment plans. Some systems [15, 2, 19] require metaprograms [11] (separate
programs which manipulate programs) to control the distribution at runtime.
This approach is not feasible in Web platforms because of the lack of rich run-
time support. In [14, 9] the adaptivity is embedded in the library design: de-
velopers have to provide and use different libraries to reconfigure applications.
XML11 [17, 16] supports customization through separate specifications because
the components are truly portable in various platforms natively; however, it is
not clear yet how to construct specifications systematically.

Conceptually, the deployment plans contain information about component
distribution aspects–concerns that are orthogonal to the application logic–and
thus principles akin to Aspect-Oriented Programming (AOP) [1,5] can be applied
as in [10, 18]. We observe that the complexity in aspect design has hindered
its acceptance in Web applications: to facilitate fast prototyping and frequent
modification, most Web applications are written in a less constrained fashion
using scripting languages. In addition, the use of aspect programming results in
an over specification of the requirements in a deployment plan and complicates
the design of the context management system.

Towards Context-Aware Web Applications 243

Context-aware software and service adaptation have been extensively studied
and have gained success in pervasive computing [12] and multimedia QoS [6]
adaptation; however, there are several assumptions in the case of adaptive com-
ponent distribution in Web applications:

– It is acceptable to have a few bad deployments since there are several factors
in the Internet which cannot be observed and predicted, such as actual net-
work condition and client’s stability. It is more important to ensure overall
efficiency instead of optimal allocation in each execution.

– Resource consumption in a single execution is usually not demanding and the
service duration is comparatively short. The pressure on the server system
comes from numerous concurrent sessions, not individual sessions. This has
two implications:

• Complex decision-making processes such as negotiation may kill any ben-
efit gained through adaptation.

• The ability to re-adapt (under context change) during a session is not
crucial.

– The Web is an open system composed of standards and protocols. A solution
requiring extra features in all participating platforms is unlikely to win wide
acceptance.

2.3 Design Strategies

From the analysis above, we identify two requirements of context-aware Web ap-
plications: adaptability and extensibility. We follow the principle of separation of
concerns [4] in design to ensure adaptability, and adopt the paradigm of gener-
ative programming in implementation to guarantee extensibility. In the bottom
layer, component distribution is separated from application logic and thus can be
reconfigured according to separate specifications. A generative framework allows
new distribution features to be added in the future. In the middle layer, features
related to higher-level concepts are abstracted from component distribution rules
and new features can be exploited using new transformation processes. In the
top layer, context features are rendered into context variables which are used
in defining deployment policies. New context features can be imported through
new context variables with modules to collect them.

3 Customizable Web Applications

We have designed and implemented a component framework (Figure 1) to sup-
port reconfigurable component distribution. The basic idea is to separate compo-
nent design and distribution features. In our framework, a prototype represents a
design concept of component; the implementation of a component is synthesized
by a generator with the distribution features that have been specified separately.
The implementation details and algorithms used for synthesis can be found in [3].
In this section, we describe the extensible specification system which enables cus-
tomizable Web application through distribution reconfiguration.

244 P.-H. Chang and G. Agha

Virtual Application Framework

Application

Generators

Linkers

Libraries

RuntimesIntranet

Internet

Fig. 1. Distribution transparent component framework

3.1 Component Annotation

Many non-functional concerns, including those we are particularly interested in,
can be specified by annotating components. For example, in order to specify the
execution location, an attribute Location can be defined. However, it is not
generally possible to annotate a specific component without knowing its unique
identification. Instead of annotating specific individual components, we apply a
rule to the set of all components that are created by a prototype. This turns
out to be reasonable in the applications that we have looked at. The syntax for
specifying that all components created with prototype X have the same value
of attribute A is given below, together with an example of its use:

[prototype X]:[attribute A] = value;

DateValidator:Location = Client;

Rules of this form are suitable for large or unique components, but not for
small ones which are used for different purposes. For example, Button is a com-
mon component; however, we expect that buttons have different attribute values
in different circumstances.

3.2 Selection by Genealogy

An obvious candidate to further distinguish a component is its creator. We can
select a set of components not only by their prototypes, but also by their creators’
prototypes. This motivates the second rule for our specification scheme. The
syntax to specify that all Y ’s created by an X share the same value of attribute
A and examples of its use are shown below:

[prototype X]>[prototype Y]:[attribute A] = value;

OrderForm>Button:Location = Client;
InventoryForm>Button:Location = Server;

A generalization of the creator relation is to specify a component by its ge-
nealogy–extending creatorship to more generations. Note that the genealogy can

Towards Context-Aware Web Applications 245

be determined at creation time and remains invariant for a component. For ex-
ample, the following rule says the attribute value of a component of prototype
Xi is decided by examining its genealogy for up to i generations.

[X0]>...>[Xi]: [attribute A] = value;

Obviously, examining the rules for more than one generation can lead to
conflicting rules for the same attributes. We use the principle that a more specific
rule overrides a less specific one. Because the genealogical ordering is linear, this
serves to resolve conflicts.

3.3 Discussion

Annotating a set of components of a prototype with specific attributes is use-
ful if the components use a specialized implementation of that prototype which
produces components obeying the given specification. Note in our model, a pro-
totype is a “concept of design” instead of an “implementation of design.” From
another prospective, a specification rule annotates a prototype implementation.
Currently we define an attribute controlling the loading policy of prototype Pro-
totypeLoad with two possible values PreLoad and OnDemand :

SubMenu:PrototypeLoad = OnDemand;
PricePanel>GridControl:PrototypeLoad = PreLoad;
CalcPanel>GridControl:PrototypeLoad = OnDemand;

The current implementation supports the following attributes: Load to con-
trol the component’s loading policy, PrototypeLoad to the prototype’s loading
policy and Location to the component’s execution location. Although only three
attributes are supported, interesting attributes can be defined using supporting
generators. For example, to support component mobility at runtime, we can add
an attribute value mobile to Location and implement a generator synthesizing
mobile components.

4 Structured Deployment Plans

It turns out that using the specification rules described directly is verbose and
error-prone for human developers. Two attribute annotations may be combined
in a rule if the target genealogy is the same, but two genealogies must be written
in two rules even when they differ in only one generation. In addition, not all
attributes are available for a prototype and some attribute values are in conflict
with others. For example, the attribute PrototypeLoad is only applicable to
a client implementation: a component cannot have this attribute with Server in
Location. It is also difficult to manage and reuse individual specification rules.
In a specification scheme containing a large number of complex rules, there is a
greater chance that it has common building blocks that are reusable.

246 P.-H. Chang and G. Agha

<OrderForm Location="Client">
<ListControl Location="Client">

<ListItem Location="Client" PrototypeLoad="OnDemand"/>
</ListControl>

<TaxCalculator Location="Client"/>
<AddressValidator Location="Server"/>

</OrderForm>

OrderForm : Location = Client;

OrderForm > ListControl : Location = Client;
OrderForm > ListControl > ListItem : Location = Client;

OrderForm > ListControl > ListItem : PrototypeLoad = OnDemand;
OrderForm > TaxCalculator : Location = Client;

OrderForm > AddressValidator : Location = Server;

Fig. 2. Using XML to represent specification rules

4.1 Moving to XML

We use XML to organize specification rules: an XML element represents a pro-
totype and multiple rules can be expressed in a tree structure. For example, the
XML fragment and rules in Figure 2 are equivalent:

Using XML helps the developer to structure specification rules. Although it
is legal to have a rule of a genealogy starting with a sub-component such as
SubMenuItem, this makes little sense in practice. Instead, a set of specifications
usually starts from a major component, such as OrderForm in our example.
Another advantage of using XML is the existence of XML schema validation
tools which can check validity and consistency of our specification rules. Note
that adopting XML does not sacrifice expressiveness: any specification rule can
be expressed in one XML fragment where every node has at most one child.

4.2 Parameterized Specification Blocks

Consider a specification scheme in the first part of Figure 3. The specifications on
OrderForm and ProfileForm have a common building block highlighted in the
grey areas. The observation immediately leads us to a shorthand representation
in the second part of Figure 3. The specification scheme defines an XML Block
element containing the common block with an attribute name, which can be
used to refer the whole block in other specifications. The idea behind this is to
make use of XML’s tree structure: a node can readily refer to a set of subtrees
with a modular representation.

However, using an element to represent a fixed set of subtrees is not as useful
as it seems to be. If there is no other rule in Figure 3, it is not necessary to
define a Block for ListControl and AddressValidator because OrderForm

Towards Context-Aware Web Applications 247

<OrderForm Location="Client">
<ListControl Location="Client">

<ListItem Location="Client" PrototypeLoad="OnDemand"/>
</ListControl>

<TaxCalculator Location="Client"/>
<AddressValidator Location="Server"/>

</OrderForm>

<ProfileForm Location="Client">

<ListControl Location="Client">
<ListItem Location="Client" PrototypeLoad="OnDemand"/>

</ListControl>
<PhoneValidator Location="Client"/>

<AddressValidator Location="Server"/>
</ProfileForm>

<Block name="block1">
<ListControl Location="Client">

<ListItem Location="Client" PrototypeLoad="OnDemand"/>
</ListControl>

<AddressValidator Location="Server"/>
</Block>

<OrderForm Location="Client">
<TaxCalculator Location="Client"/>

<block1/>
</OrderForm>

<ProfileForm Location="Client">
<PhoneValidator Location="Client"/>

<block1/>
</ProfileForm>

Fig. 3. A common block can be defined by a Block element

and ProfileForm have the same specification on these prototypes; top-level
specifications on ListControl and AddressValidator are sufficient: OrderForm
and ProfileForm will follow. A reusable block must be parameterized: it does
not represent a set of rules (with fixed attribute values), but a group of selectors ;
the actual attribute values of these selectors, configuration of the block, can be
controlled through a parameter.

We introduce another tag Configuration for configurations in a Block. Each
Configuration element in a Block has the name attribute and contains an
XML fragment representing the configuration. To reuse a block, we can set the

248 P.-H. Chang and G. Agha

<Block name="block1">

<AddressValidator Location="Server"/>

<Configuration name="conf1">

 <ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="OnDemand"/>

 </ListControl>

</Configuration>

<Configuration name="conf2">

 <ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="PreLoad"/>

 </ListControl>

</Configuration>

</Block1>

<OrderForm Location="Client">

<TaxCalculator Location="Client"/>

<block1 configuration="conf1"/>

</OrderForm>

<ProfileForm Location="Client">

<PhoneValidator Location="Client"/>

<block1 configuration="conf1"/>

</ProfileForm>

<FriendsList Location="Client">

<EmailValidator Location="Client"/>

<block1 configuration="conf2"/>

</FriendsList>

Fig. 4. A block can define multiple configurations

configuration attribute to choose the desired configuration in the block. Figure 5
shows the expanded specification from Figure 4. Blocks and configurations can be
constructed recursively: a Configuration element can contain other blocks. In
addition, a Block element can contain elements other than Configuration: these
elements will be included in the block replacement no matter which configuration
is selected. (See AddressValidator specification in block1.)

4.3 Partial Plans

XML is sufficiently expressive to represent an application’s composition struc-
ture; XML can also organize cross-cutting concerns: logically unrelated compo-
nents sharing common properties can be aggregated into a specification block.
For example, a developer can identify those objects whose deployment have great
impact on a certain resource (hence share a common property), such as CPU
cycles and bandwidth, and define a specification block accordingly. The block
then serves as a partial plan on condition of the specific resource. The context
management system can reuse partial plans to create a deployment plan for
a new identified context preference. This approach also provides extensibility:
as new resources are taken into consideration, new specification blocks and new
configurations can be designed independently without drastic changes in existing
ones.

Towards Context-Aware Web Applications 249

<OrderForm Location="Client">

<TaxCalculator Location="Client"/>

<AddressValidator Location="Server"/>

<ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="OnDemand"/>

</ListControl>

</OrderForm>

<ProfileForm Location="Client">

<PhoneValidator Location="Client"/>

<AddressValidator Location="Server"/>

<ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="OnDemand"/>

</ListControl>

</ProfileForm>

<FriendsList Location="Client">

<EmailValidator Location="Client"/>

<AddressValidator Location="Server"/>

<ListControl Location="Client">

 <ListItem Location="Client" PrototypeLoad="PreLoad"/>

</ListControl>

</FriendsList>

Fig. 5. The expanded specification of Figure 4

5 Context Management

We have designed and implemented an extensible context management system
(Figure 6). The system includes three modules: context monitors active collect
context information and store context features in context variables, which are
used by Adaptation Policies to generate full deployment plans.

5.1 Context Features

The concept of context is abstract and the available features of a context are
evolving. For example in the past service providers had little access to informa-
tion about the client’s geolocation, which is widely exploited nowadays for better
service and resource allocation. Nonetheless, a context feature can be utilized
only if it is quantitative and measurable. In our context management system, a
context feature is represented by a context variable, and the introduction of a
new context variable must come with a variable monitor maintaining the value.

Monitors can be implemented in a variety of forms as long as they update
their variables in a timely manner. For example, the system status monitor for
System.CPU and System.Bandwidth is implemented with OS system calls; the
monitor for client capabilities is implemented with JavaScript detection code;
and the user preference monitor reports related variable values by consulting
the user profile database.

5.2 Policy Design

Defining an adaptation policy is straightforward: a policy is pair of a condition
on context variables and a set of partial plans. When the context management

250 P.-H. Chang and G. Agha

Context
Monitors

Context
Variables

Adaptation
Policies

Incoming Request

User
ProfilesOS Geo

DB

Partial
Plans

Full Plan

Fig. 6. The context management system

system receives an incoming context, it collects the partial plans in the policies
whose conditions are evaluated true and generates the full deployment plan.

Consider the first example in Section 2: we want to deploy the Highlighter to
the client only under a special context where the CPU cycles are much more
precious than the bandwidth, the policy can be written as follows:

(System.CPU*[Costcpu] > System.Bandwidth*[Costbandwidth])
=> <Highlighter Location="Client"/>

A cost function can be a constant for the normalization factor or a function
of other context variables. In the second example, first we define a specification
block TVListing with a configuration FastResponse which specifies all client
components as PreLoad. The following policy selects the partial plan for fast re-
sponse when the client’s connection has long latency and the available bandwidth
is not in stress.

(Client.Latency*[Costlatency] > System.Bandwidth*[Costbandwidth])
=> <TVListing configuration="FastResponse"/>

6 Conclusion

We described a new approach for building context-aware Web applications. Us-
ing our system, a Web application can adapt to specific contexts through re-
configurable component distribution. Patterns of distribution are extensible: as
interesting patterns are identified as useful, developers can define attributes and

Towards Context-Aware Web Applications 251

add new generators that are able to synthesize components with the desired be-
havior, or just design new specification blocks that realize the patterns. Such ex-
tensibility ensures existing Web applications can evolve in the face of widespread
change in the Web environment and their users’ interaction. The system itself is
adaptive: new context features can be integrated by adding the corresponding
context variables and monitors, followed by adaptation policies conditioned by
these variables.

As future work, we are exploring solutions to automatic policy design and
optimization. Currently, good adaptation depends on human design in specifi-
cation blocks (partial plans) and adaptation policies. As mentioned earlier, a
typical Web application is executed numerous times a day and a few bad de-
ployments do not incur much loss. There are great opportunities in mining the
performance history and exploring test cases for better policies. We expect fu-
ture Web applications will adapt themselves automatically by learning their past
usage patterns.

References

1. Aspect-Oriented Software Association. http://www.aosd.net/
2. Caromel, D., Henrio, L.: A Theory of Distributed Objects: Asynchrony-Mobility-

Groups-Components. Springer, Heidelberg (2005)
3. Chang, P.-H., Agha, G.: Supporting reconfigurable object distribution for customiz-

able web applications. In: SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing, pp. 1286–1292 (2007)

4. Dijkstra, E.W.: A Principle of Programming. Prentice-Hall, Englewood Cliffs
(1997)

5. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming. Communica-
tions of ACM, vol. 44(10) (2001)

6. Fitzpatrick, T., Blair, G., Coulson, G., Davies, N., Robin, P.: Supporting adap-
tive multimedia applications through open bindings. In: CDS ’98. Proceedings of
the International Conference on Configurable Distributed Systems, p. 128. IEEE
Computer Society, Washington, DC (1998)

7. Gardner, J.R., Rendon, Z.L.: XSLT and XPATH: A Guide to XML Transforma-
tions. Prentice-Hall, Englewood Cliffs (2002)

8. Garrett, J.J.: Ajax: A New Approach to Web Applications (February 2005)
9. Google Inc. Google Web Toolkit - Build AJAX Apps in the Java language.

http://code.google.com/webtoolkit/
10. Kersten, M., Murphy, G.C.: Atlas: a case study in building a Web-based learning

environment using aspect-oriented programming. ACM SIGPLAN Notices 34(10),
340–352 (1999)

11. Kiczales, G., Rivieres, J.D., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA (1991)

12. Lum, W.Y., Lau, F.C.M.: A context-aware decision engine for content adaptation.
IEEE Pervasive Computing 1(3), 41–49 (2002)

13. Meyer, E.: Cascading Style Sheets: The Definitive Guide. O’Reilly (2000)
14. NextApp, Inc. Echo2. http://www.nextapp.com/platform/echo2/echo/
15. Philippsen, M., Zenger, M.: JavaParty – Transparent Remote Objects in Java.

Concurrency: Practice and Experience 9(11), 1225–1242 (1997)

http://www.aosd.net/
 http://code.google.com/webtoolkit/
http://www.nextapp.com/platform/echo2/echo/

252 P.-H. Chang and G. Agha

16. Puder, A.: A code migration framework for ajax applications. In: Eliassen, F., Mon-
tresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, pp. 138–151. Springer, Heidelberg
(2006)

17. Puder, A.: XML11 - an abstract windowing protocol. Sci. Comput. Program 59
(1-2), 97–108 (2006)

18. Tilevich, E., Urbanski, S., Smaragdakis, Y., Fleury, M.: Aspectizing server-side
distribution. In: Proceedings of the Automated Software Engineering (ASE) Con-
ference, IEEE Press, New York (2003)

19. Varela, C.A.: Worldwide Computing with Universal Actors: Linguistic Abstractions
for Naming, Migration, and Coordination. PhD thesis, University of Illinois at
Urbana-Champaign (2001)

A Flexible Architecture for Enforcing and

Composing Policies in a Service-Oriented
Environment

Tom Goovaerts, Bart De Win, and Wouter Joosen

DistriNet Research Group, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium

{tom.goovaerts,bart.dewin,wouter.joosen}@cs.kuleuven.be

Abstract. Service Oriented Architectures (SOA’s) enable powerful ap-
plication and end user service composition from independently defined
services. The effective deployment of such composed services requires
adaptation of and interoperability between services. This challenge can
be approached by specifying service composition in policies, and by en-
forcing these policies in a sophisticated run-time architecture.

In this paper, we present an open architecture for enforcing and com-
posing complex policies that can depend on the available services in the
environment. Complex polices have typically been studied in the con-
text of policy languages, yet they have never been fully supported in a
SOA-based execution environment. We have created a flexible run-time
architecture that maximizes interoperability, adaptability and evolution.
We have prototyped our architecture on an Enterprise Service Bus and
we illustrate how our solution supports realistic and complex policies.

1 Introduction

Services are the fundamental building blocks of software systems when apply-
ing the Service-Oriented Computing (SOC) paradigm [17]. Services expose a
well-defined behavior in independent units of business logic and are used and
deployed in complex compositions to create distributed business applications.
The applications that emerge in service oriented architectures can become large
and fairly complex, and can be interconnected with services from various orga-
nizations and stakeholders. In this context, describing and enforcing acceptable
(correct, permitted, manageable, affordable, etc.) compositions have become key
challenges.

Policy languages and subsystems that ensure the enforcement of policies have
become an increasingly important sub domain in distributed systems and mid-
dleware as they deal with the above mentioned challenges. Systems need to be
able to comply with an ever growing set of business rules and regulations that
are subject to continuous change. Policies are rules that specify choices in the
behavior of a system [4]. By specifying these rules separately from the applica-
tions, the behavior can be changed dynamically by modifying the policy rules

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 253–266, 2007.
c© IFIP International Federation for Information Processing 2007

254 T. Goovaerts, B. De Win, and W. Joosen

without affecting any application code. Policy-based systems most often adhere
to the XACML dataflow model [16], which consists of policy decision points
(PDPs), policy enforcement points (PEPs) and optionally policy information
points (PIPs). A PDP focuses on how policy rules are evaluated given a certain
state of the system. A PEP handles the provisioning of system state information
to the PDP and the execution of the correct semantics of the policy decisions
that are returned by the PDP. The PIP provides additional context information
to support the decision making process of the PDPs. The most familiar types
of policies are probably in the area of authorization. Other examples of policies
include user preference policies that govern user-configurable behavior of a sys-
tem, privacy policies that contain privacy rules and SLA/SLO policies that deal
with elements of quality of service.

In most cases, policies are defined and enforced at the level of individual
resources such as objects or components. However, a SOA introduces an ab-
straction layer of services that are indirectly related to the underlying resources.
Therefore, new types of policies arise that make use of services. Moreover, the
underlying resources that are being interconnected may be implemented on dif-
ferent heterogeneous systems that are unaware of each other. For these reasons,
the emerging policies cannot exclusively be enforced at the level of the underlying
systems, or at the level of underlying resources.

In other words, the kinds of policies that can be supported by straightforward
adoption of existing policy technology are often restricted in several ways. First:
it is hard to enforce application-level policies that require information that is
contained in multiple distinct services. Secondly, policy enforcement mechanisms
are often tightly coupled with both the specific middleware platform and/or
with specific policy-related technologies. Due to the openness and very frequent
evolution of a service oriented environment, it needs to be able to interface
with a range of policy languages, policy servers, message formats and functional
services.

This paper addresses the gap between existing message oriented service plat-
forms and known policy systems by offering policy enforcement as a service. A
message oriented service platform is a specific type of message oriented mid-
dleware that is based on message interception capabilities. Such architecture
therefore is agnostic on specific message formats and policy languages. Our ar-
chitecture maximizes the reuse of policy decision logic and of enforcement logic.
Due to its flexibility, the architecture can be used to implement fine-tuned policy
enforcement points in multiple operational contexts.

The main contribution of this paper is an open architecture for enforcing
and composing complex policies that can depend on the available services in
a SOA. To the best of our knowledge, complex polices have typically been
studied and supported in the context of policy languages, yet they have never
been fully supported in a SOA-based execution environment. We have created a
flexible run-time architecture that maximizes interoperability, adaptability and
evolution. We have prototyped our architecture on an Enterprise Service Bus
(ESB). The prototype demonstrates policy enforcement for SOAP messages in a

A Flexible Architecture for Enforcing and Composing Policies 255

telecom-centric ESB. We show how our solution improves interoperability and
flexible adaptation in a service oriented environment.

The rest of the paper is structured as follows. Section 2 elaborates on the
problem domain by presenting some representative policies. Section 3 then sum-
marizes the requirements for a policy enforcement architecture that can manage
complex polices. Section 4 presents our solution: the architecture, an illustration
of policy enforcement in the architecture and the prototype implementation. We
evaluate our solution in Section 5 and compare with related work in Section 6.
Then we conclude.

2 Motivating Example

We illustrate the kinds of high level policies that need to be enforced by means
of a concrete policy set. Suppose we have a set of three services: an Address
Book service that keeps track of a contact list, a Call service that can be used to
setup phone calls and a Location service that can be used to lookup the current
location of a given user. Consider the following policy set:

1. Everyone can view all address book records, but one can only modify the contact
information of its own record.

2. Address book records can only be modified when the user is at its desk. When a
user tries to modify its address book record when he/she is at home, deny this
and audit the attempt.

3. Only allow calls to someone’s work phone during office hours. If someone calls
a user on its work phone during office hours, but the user is not located in the
office, reroute the call to the user’s mobile phone.

The first rule illustrates the fact that policies can be based on the contents of
a message. In this case, the message will contain an argument that determines
the target record that will be modified. The second rule illustrates the fact that
the enforcement of rules that concern one service (in this case the Address Book
service) may need information contained in other services (the Location service).
Moreover, the second rule illustrates that policies might specify complex results
that can contain obligations. Obligations are tasks that need to be fulfilled by
the system upon enforcement of a policy decision. The third rule shows that a
high level policy rule might actually consist of different kinds of policies that
need to be combined. The first part of the policy rule specifies an authorization
while the second part is a typical business rule. Therefore, this policy rule will
normally be split up (or at least, it may be implemented) in different languages
and with different decision mechanisms.

These services are loosely coupled to each other: they could be implemented
by a different underlying platform or could even belong to an external party. The
implementations of the services are fully unaware that they are being integrated
with specific other services. For these reasons, the enforcement of such policies
needs to be performed at the level of the platform that hosts the services.

256 T. Goovaerts, B. De Win, and W. Joosen

3 Requirements

This section describes the most important characteristics that drive the archi-
tectural design of our policy enforcement solution. We assume that policies are
contained in policy services that support the making of policy decisions and thus
function as PDPs.

Advanced policy support. Advanced service-level policies such as the exam-
ple policies from Section 2 should be supported. What is characteristic for
these policies, is that their enforcement might need the invocation of other
services. This consists of:
– Information provisioning ensures that policy services have access to all

the information they need in order to make a policy decision. This in-
formation can be contained in the message itself or it can be contained
in functional services.

– Decision execution is the execution of the decision(s) that are returned
by a policy service. In contrast to an authorization decision that declares
a binary allow/deny result, the execution of a general policy decision can
be a complex operation. Policy decisions can also contain obligations that
need to be executed by the system in addition to the decision itself.

Interoperability with policy services and message formats. A SOA in-
terconnects a set of heterogeneous systems that may use different messages
and formats. Moreover, it is important that different policy languages and
engines can be supported. Therefore, a policy enforcement solution needs
to be interoperable with multiple message formats and with multiple policy
services.

Flexibility. Because the operational environment is subject to frequent evolu-
tion, it is necessary that a policy enforcement solution is able to be adapted
to these changes. More specifically:
– Changing and combining policy services It should be possible to easily

change policy services that are specific to one language. Moreover, it is
possible that policy enforcement for one message requires the combina-
tion of decisions from multiple policy services. Therefore, an enforcement
solution should allow policy services to be changed and combined with
each other.

– Flexible binding with the operational environment The policy services
and their policies should be made independent of all environment-specific
aspects. Therefore, it must be possible to change the binding of the
policies with the environment. This binding consists both of information
sources containing policy-relevant data and of the execution logic of the
policy decisions and their obligations.

Performance. Since policy enforcement needs to operate on messages, it may
become an unacceptable performance bottleneck. Therefore, the runtime en-
forcement overhead should be minimized.

The first and last requirements ensure that policy enforcement is possible
and feasible in practice. The second and third requirements make sure that the

A Flexible Architecture for Enforcing and Composing Policies 257

architecture can deal with changes in the environment. These requirements are
used as the basis for the architectural design that is discussed in Section 4.

4 Architecture

In this section, the policy enforcement architecture is presented. Since the service
is the basic building block in the environment, we have chosen to offer the policy
enforcement functionality itself as a service, which we call the ‘policy enforcement
service’ or simply the ‘enforcement service’. In Section 4.1, we elaborate on the
architectural design that was driven by the requirements from Section 3. In
Section 4.2, the architecture is applied to the example policies from Section 2
and in Section 4.3 we discuss our prototype.

Fig. 1. Overview of the architecture

4.1 Architectural Design

Figure 1 depicts the main structure and the components of the architecture.
The architecture is structured in three layers. From top to bottom, the Policy
Layer focuses on managing and reasoning about policy rules. The Generic Mes-
sage Layer, which is the most important layer of the architecture, is responsible
for connecting execution contexts with high-level policy services (by means of a
generic message format), for coordinating the invocation of policy services and
for executing policy decisions. Finally, the Environment Layer represents the op-
erational environment. Since each layer operates with different representations,
adapter components are introduced to bridge between the different layers.

258 T. Goovaerts, B. De Win, and W. Joosen

From a high-level perspective, the architecture operates as follows. All mes-
sages in the environment that require policy enforcement are forwarded to the
policy enforcement service by means of an Interceptor component. Policy services
contain the effective policies and return policy decisions over a native protocol.
For each relevant policy service, the enforcement service creates a policy request
based on the contents of the message, sends it to the policy service and obtains a
policy decision. Subsequently, the policy decision is enforced and the next policy
service is consulted and so on. The final output of the enforcement service will
always be another message, which is usually a transformation of the incoming
message.

In terms of the XACML model, the combination of the Interceptor and the
Policy Enforcement Service function as PEP, the Policy Enforcement Service
functions also as PIP and the policy services function as PDPs. The core compo-
nents of the architecture, contained in the architectural component as indicated
on Figure 1, will now be discussed in more detail.

Policy Layer
Policy Service Adapters. The integration of (possibly external) policy services
is enabled by Policy Service Adapters. A Policy Service Adapter inspects an
incoming message and sends a request to its policy service based on the contents
of the message. Subsequently, it returns the result of the policy service to the
architecture in the form of a policy decision. A policy decision consists of a set
of actions that each can contain a set of obligations. Actions and obligations
are abstract task descriptions that are defined by an identifier and a set of
arguments. Obligations are tasks that should be enforced in conjunction with
the enforcement of an action. For instance, an ‘audit’ obligation can be attached
to a ‘deny’ action, indicating that a negative authorization should be audited.

Attribute Registry. Policy services sometimes require access to contextual infor-
mation that is not contained in the message itself. Examples of such information
are the location of an end-user or the uptime of a service. For this purpose, the
Attribute Registry is introduced. The Attribute Registry is a simple attribute
repository that can be queried by the Policy Service Adapters or by Policy
Services themselves. It actually binds the abstract information that is used in
the policies with the concrete environment. The retrieval logic for a particu-
lar attribute is contained in Attribute Retrievers and can be plugged in upon
integration with a particular environment.

Generic Message Layer
Generic Message Model. The policy enforcement service needs to bridge a va-
riety of message formats on the one hand, and different types of requests for
policy services on the other hand. In order to deal with this N-to-M mapping,
a common message representation, the generic message format, is introduced.
A generic message consists of the subject responsible for sending the message,
the action that is being targeted by the message and the target service for the

A Flexible Architecture for Enforcing and Composing Policies 259

message. For instance, if user ‘X’ requests an address on an Address Book service,
the generic message will consist of subject X, action ‘getAddress’ and target
‘Address Book’. Each of these elements is represented by an identifier and a set
of key-value pairs called attributes. The architecture assumes that all messages
in the environment at least contain identifiers for these three concepts.1 The
generic message also contains a reference to the original message. Within the
architecture, each generic message is wrapped in a Message Context, which is
used, among others, to maintain state over the invocation of multiple policy
services.

Policy Invoker. The Policy Invoker expects an incoming generic message and
is responsible for coordinating the invocation of the different policy services.
The Policy Invoker holds a sequential chain of Policy Service Adapters to de-
termine the order in which the policy services are consulted and their deci-
sions are enforced. After a Policy Service Adapter returns a decision, the Policy
Invoker passes it to the Action Manager. When the actions are enforced, the
next Policy Service Adapter gets to process the message and the process is
repeated.

If multiple policy services are chained, one policy service might need to use
information that has been generated by a decision of a previous policy service.
While the architecture does not provide support for the semantics of such meta-
data, it does allow a Policy Service Adapter to influence the decisions of its
successors in the following ways:

1. By modifying the original message. This can result in new or modified at-
tributes of the subject, action or target service of the message.

2. By adding attributes to the generic message. These modifications only live
as long as the enforcement service handles the message.

3. Through the Message Context. The Message Context consists of a set of
key-value pairs that can contain arbitrary metadata that is not related to
the subject, action or target service.

Action Manager & Obligation Manager. Actions and obligations in a policy de-
cision specify what functionality needs to be enforced. The architecture needs to
know how to enforce these actions and obligations in a concrete environment.
This is the responsibility of the Action Manager. Action execution logic is del-
egated to Action Handlers : the Action Manager associates action identifiers to
the Action Handlers that are responsible for executing them. Modification of the
original message (e.g., for an ‘encrypt’ action) is supported through the generic
message’s reference to the original message. Obligations are handled similarly:
an Obligation Manager consisting of a set of Obligation Handlers executes the
obligations contained in each action.

1 While this consideration makes sense at a conceptual level, it is possible that these
elements are not explicitly represented in the actual messages. In these cases, adap-
tations to services or middleware infrastructure should take care of attaching the
appropriate metadata to the messages.

260 T. Goovaerts, B. De Win, and W. Joosen

Environment Layer
Message Adapters. Messages from the environment layer in a specific format are
converted into generic messages by Message Adapters. It is possible that the
original message is changed by a policy decision. If this happens, the Message
Adapter needs to synchronize the generic message with the original message in
order to represent the potentially altered subject, action and target attributes.

4.2 Enforcement of Example Policies

We illustrate the architecture by describing the enforcement of the three example
policies from Section 2. Figure 2 illustrates the execution flows in the architec-
ture. Since the example policies contain authorization rules as well as business
rules, we assume that there are two different policy services. The authorization
service returns ‘allow’/‘deny’ decisions (potentially including an ‘audit’ obliga-
tion) and the business rule service returns a ‘redirect’ decision. Therefore, the
Action Manager is configured with ‘allow’, ‘deny’ and ‘redirect’ Action Handlers
and the Obligation Manager is configured with an Audit Obligation Handler.
Furthermore, the Attribute Registry is configured with two Attribute Retriev-
ers: one that fetches the current time and one that contacts the Location Service
for getting the location of a user with a given identifier.

Fig. 2. Execution flow throughout the architecture applied to the example policies

The solid gray arrows show the minimal flow that is followed for enforcing all
three policies. First of all, the incoming message from the bus is translated into
a generic message by the message adapter. In our case, the target of the generic
message can be either the Address Book service or the Call service.2 Then,
2 The Location service is only used within the policies for gathering the location

attribute for the subject.

A Flexible Architecture for Enforcing and Composing Policies 261

the generic message is forwarded to the Policy Invoker that contains a chain
of two Policy Service Adapters. The generic message is wrapped in a Message
Context and is sent to the Authorization Service Adapter. For the first rule,
no additional attributes have to be gathered from the Attribute Registry, but
both the second and the third rule do require the Attribute Registry. In the
example, the adapter fetches these attributes proactively. After the adapter has
created and sent a policy request from the generic message, the policy service
returns a decision. In this case, the decision will contain either an ‘allow’ or ‘deny’
action without parameters and optionally an ‘audit’ obligation with the audit
message as parameter. The decision is returned to the Invoker, which forwards
it to the Action Manager. The Action Handlers execute the decision, potentially
modifying the Message Context or the message itself. If an obligation is included,
the Action Manager invokes the Obligation Manager.

For the third rule, an additional Adapter is required. The invocation of the
Policy Service is similar to the previous case, except that the decision can be a
‘redirect’ action with the new telephone number as argument. Again, the invoker
sends this action to the Action Manager which executes it and has the potential
to modify the target telephone number in the original message.

4.3 Prototype

We have implemented a prototype of the architecture and we have validated it
on an ESB-based telecom service platform in the context of the T-CASE project
[9]. An Enterprise Service Bus (ESB) is a message oriented middleware for the
integration of enterprise applications that in itself is architected in a service-
oriented way. The ESB is used to mediate SOAP messages between a set of
simple Web Services, such as an Address Book service, a Jabber service and a
Calendar service. The interception logic is implemented by a message routing
service that is called the Content-Based Router. The policy enforcement service
itself is integrated by means of a SOAP interface.

It is expected that the SOAP messages on the ESB at least contain the fol-
lowing information:

– The authenticated identity of the user represented by a SAML [14] authen-
tication assertion in a WS-Security [15] header.

– The action and the target service are represented in a WS-Addressing [23]
header as <Action> and <To> elements respectively.

Since the ESB only mediates SOAP messages, a single SOAP Message Adapter
has been implemented. For efficiency reasons, the body of the SOAP message
is not processed, but the full SOAP message does get attached to the generic
message so that it can be used later on.

Two Policy Service Adapters have been implemented. The first one verifies the
SAML assertion that is included with the message. A separate authentication
server is used to authenticate users in advance and generate these assertions.
The second adapter wraps a rule-based policy service and returns authorization
decisions that contain either ‘permit’ or ‘deny’ actions. The ‘deny’ action is

262 T. Goovaerts, B. De Win, and W. Joosen

enforced by a SOAP-specific Action Handler that replaces the original message
by a SOAP Fault message that is directed to the original sender.

The implementation of the Attribute Registry consists of a set of Attribute
Retrievers that are responsible for looking up attributes for demonstration pur-
poses. Attribute Retrievers can inspect the SOAP message, for instance to lookup
information that is contained in the body.

5 Evaluation and Discussion

In this section each of the requirements of the architecture is evaluated and some
interesting points of discussion are put forward.

Advanced Policy Support. The information that can flow to the policy services
consists of two categories: information that is pushed towards the policy services
and the information that is pulled from the environment. The former is realized
by the generic message model and the Message Adapters and the latter is realized
by the Attribute Registry. Some information such as the parameters of a message
can be pushed as well as pulled. The choice for pulling such an attribute from
the Attribute Registry is mainly driven by performance reasons, since pushing
an attribute introduces an overhead for every single message.

Interoperability with Policy Services and Message Formats. Interoperability is
achieved by inserting the adapter components (Message Adapters and Policy
Service Adapters) that translate back and forth between the generic format and
native formats. In our prototype, we chose to focus on SOAP messages. However,
we are confident that, as long as messages contain the right set of metadata,
it is feasible to write a Message Adapter for them. Concerning policy service
interoperability, we have implemented one adapter for an authentication policy
service and one adapter for a business rule-based policy service.

Flexibility

– Changing and Combining Policy Services The combination of multiple policy
services is supported by sequentially chaining Policy Service Adapters, which
may cause conflicts. The architecture has no explicit support for conflict
detection or resolution: we assume that conflicts are solved at the policy
layer. If two or more Policy Service Adapters have a large semantic overlap,
they should be integrated in a single adapter that is capable of resolving
conflicts.

– Flexible Binding with the Operational Environment The policy enforcement
service effectively binds heterogeneous policy services with functional ser-
vices by presenting a generic policy-centric view of the environment to the
policy services. This view consists of an information part, which is real-
ized by the generic message format and the Attribute Registry, and of an
enforcement part, which is realized by the Action Manager and Obligation
Manager. Flexibility of the mapping between this abstract view and the con-
crete semantics – how to enforce an action, how to retrieve an attribute, etc.

A Flexible Architecture for Enforcing and Composing Policies 263

– is supported by isolating this logic in replaceable components (Message
Adapters, Attribute Retrievers, Action Handlers and Obligation Handlers).
Throughout the development of the prototype, this flexibility proved to be
very useful: numerous transitions and additions of logic were made to sup-
port new kinds of policies.

If the semantics depend on specific functional services (eg. send a warning
message to a user’s mobile phone or get the bank account number of a user),
new instances of these components have to be written and need to be plugged
into the enforcement service. The architecture currently has no support for
automating this problem and thus dealing with it in a fully generic way.

Performance. The performance of the prototype has been evaluated at two lev-
els. At a macroscopic level, the average response times have been measured for
a set of incoming messages. A set of 4 policy rules of increasing complexity has
been created that allowed us to trigger the execution of specific and predictable
components. The test has been performed in six phases in which the response
times for a specific and known message has been measured. The first two poli-
cies have also been tested for a ‘deny’ decision. The results of the macroscopic
test are shown in Figure 3(a). The enforcement of a ‘deny’ result is slightly
more efficient since it does not induce duplication of the original message. The
biggest performance hit is introduced by Policy2 and Policy4 and is caused by
the introduction of additional Attribute Retrievers.

Figure 3(b) gives an insight into the microscopic performance overhead. The
left bar shows the percentage of the total time spent in each of the components
during the execution of all six test phases. The major performance overhead is
introduced by two components that operate on the SOAP messages: the SOAP
Message Adapter and the XPath Attribute Retriever. The second bar zooms
in on the lower part of the left bar and shows that the internal components of
the enforcement service (including the policy service adapters) only account for
less than 5% of the total overhead. This means that there is still much room
for improvement for optimized implementations of the adapters and Atribute
Retrievers.

The current design of the architecture has some limitations as well, which will
be discussed next. Note that addressing these limitations involves a trade-off
that depends on the deployment environment, as they increase the complexity
and, hence, the execution time of the architecture.

The chaining of Policy Service Adapters only supports the combination of
policy services in a static way such that chains cannot be changed dynamically at
runtime. The latter could be useful however, among others, to support scenarios
in which the outcome of one policy service can have an impact on the other
services to be consulted. The support for dynamic policy service combination
requires the extension of the Policy Invoker component with a meta-policy that
specifies the effective sequence of policy services based on runtime information.
The Policy Invoker needs to enforce this meta-policy before each invocation of
a Policy Service.

264 T. Goovaerts, B. De Win, and W. Joosen

(a) Macroscopic: Average re-
sponse times over 1000 mes-
sages (in ms) for increasingly
complex policies.

0%

20%

40%

60%

80%

100%

(b) Microscopic: Average relative time
spent (in %) in each of the components.

Fig. 3. Performance measurements

Related to this, the composition of policy services is currently purely sequen-
tial. Other useful composition strategies exist [11] such as parallel or hierarchical
composition. The former could improve the execution speed of the architecture
and the latter could be used to support the semantic composition of policy rules.
While these strategies are realizable at the level of the enforcement architecture
in the Policy Invoker, they are often also supported at the level of individual
policy services, in which case they are fully transparent for the enforcement
architecture.

6 Related Work

In the field of policy languages, some languages such as Rei [10] and XACML
[16] put more focus on the language features itself than on the enforcement
aspect. Some notable languages that do consider enforcement in detail are Ponder
[4,7] and KAoS [22]. These languages offer excellent support for specifying and
combining advanced policies, but they assume that a single policy language
governs the whole environment. Our work is capable of integrating multiple
languages.

We take a centralized approach to policy enforcement: policies are enforced
near the services they govern. Some kinds of policies such as refrain policies
[4] require client-side enforcement. If interceptor components can be placed at
the client side, these kinds of policies can also be supported. In the context of
large scale SOA’s such as Web Services or Grid systems, policy enforcement is
often decentralized [19,5]: effective properties of an interaction are negotiated at
runtime by the semantic matching of client requirements with service offerings.
Our architecture can enforce the outcome of these policies at each peer once
they are negotiated.

When enforcing security policies for isolated applications, the PDP and PEP
are often merged and integrated by instrumenting the application’s code [20,1].

A Flexible Architecture for Enforcing and Composing Policies 265

While this approach is very efficient, it is difficult to apply it to an open envi-
ronment where policies and applications evolve rapidly.

Evolution and openness requires the strict separation of PEPs and PDPs.
In the access control field, there are two major directions that promote this
separation: PDPs can be offered through a uniform API (for example, the Au-
thorization (AZN) API from the Open Group [8] and the Java Authorization
Contract for Containers (JACC) [21]) or they can be offered as a distributed ser-
vice (such as the Resource Access Decision Facility (RAD) [2] and Tivoli Access
Manager [12]). Pulling decision logic out of the application increases interoper-
ability and flexibility, at the expense of making it harder to enforce advanced
kinds of application-level policies. Our work is a first step towards bridging this
gap.

Message interception is a well known technique for separating policy logic
from application logic that is generic and flexible (for example, see [3,18]). Other
authors have used Aspect-Oriented Programming (AOP) [13] for integrating
security and policies with applications [6,24]. AOP is situated at a higher level of
abstraction but is less generic, which makes it hard to apply it in a heterogeneous
environment.

7 Conclusion

In this paper, we have presented an open architecture for enforcing advanced
policies in a service-oriented environment. The architecture can be used to in-
stantiate flexible policy enforcement points; it can handle realistic policies that
are required by state-of-the-art Service Oriented Architectures. Our solution
supports adaptation and evolution of the platform, the service composition and
the specific policies. We have prototyped and validated our architecture on a
telecom-centric ESB.

Future work includes further validation of our architecture. More specifically,
the interoperability with existing environments and policy languages will be
studied in more detail. In addition, the challenge of managing the information
flow of policy-relevant data will be studied.

References

1. Bauer, L., Ligatti, J., Walker, D.: Composing Security Policies with Polymer. In:
Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, pp. 305–314 (2005)

2. Beznosov, K., Deng, Y., Blakley, B., Burt, C., Barkley, J.: A Resource Access
Decision Service for CORBA-based Distributed Systems. In: Proceedings of the
15th Annual Computer Security Applications Conference, p. 310 (1999)

3. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Secur-
ing SOAP e-services. International Journal of Information Security 1(2), 100–115
(2002)

4. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. Lecture Notes in Computer Science 2001, pp. 18–38 (2001)

266 T. Goovaerts, B. De Win, and W. Joosen

5. Dan, A., Dumitrescu, C., Ripeanu, M.: Connecting Client Objectives with Resource
Capabilities: an Essential Component for Grid Service Managent Infrastructures.
In: Proceedings of the 2nd International Conference on Service Oriented Comput-
ing, pp. 57–64 (2004)

6. D’Hondt, M., Jonckers, V.: Hybrid Aspects for Weaving Object-Oriented Function-
ality and Rule-Based Knowledge. In: Proceedings of the 3rd International Confer-
ence on Aspect-Oriented Software Development, pp. 132–140 (2004)

7. Dulay, N., Lupu, E., Sloman, M., Damianou, N.: A Policy Deployment Model
for the Ponder Language. Integrated Network Management Proceedings, 2001
IEEE/IFIP International Symposium on, pp. 529–543 (2001)

8. The Open Group. Authorization (AZN) API. Open Group Technical Standard
C908 (2000)

9. Interdisciplinary Institute for BroadBand Technology. T-CASE Project (Technolo-
gies and Capabilities for Service-Enabling) (2005)
https://projects.ibbt.be/tcase/

10. Kagal, L.F., Joshi, T.A.: A Policy Language for a Pervasive Computing Environ-
ment. Policies for Distributed Systems and Networks, 2003. Proceedings. POLICY
2003. IEEE 4th International Workshop on, pp. 63–74 (2003)

11. Kanada, Y.: Taxonomy and Description of Policy Combination Methods. In: Pro-
ceedings of the International Workshop on Policies for Distributed Systems and
Networks, pp. 171–184 (2001)

12. Karjoth, G.: Access Control with IBM Tivoli Access Manager. ACM Transactions
on Information and System Security 6(2), 232–257 (2003)

13. Kiczales, G.: Aspect-Oriented Programming. ACM Computing Surveys 28,
232–257 (1996)

14. OASIS. Security Assertion Markup Language Specification, Version 1.1 (2003)
15. OASIS. Web Services Security: SOAP Message Security, Version 1.0 (2004)
16. OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0 (2005)
17. Papazoglou, M., Georgakopoulos, D.: Service-Oriented Computing: Introduction.

Communications of the ACM, vol. 46(10) (2003)
18. Ritter, T., Schreiner, R., Lang, U.: Integrating Security Policies via Container

Portable Interceptors. IEEE Distributed Systems Online, vol. 7 (2006)
19. Schlimmer, J., et al.: Web Services Policy Framework Specification, Draft Version

(2004)
20. Schneider, F.B.: Enforceable Security Policies. ACM Transactions on Information

and System Security 3(1), 30–50 (2000)
21. Sun Microsystems. Java Authrozation Contract for Containers (JACC) Version 1.0

(2003)
22. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L.,

Johnson, M., Kulkarni, S., Lott, J.: KAoS Policy and Domain Services: Toward a
Description-logic Approach to Policy Representation, Deconfliction, and Enforce-
ment. Policies for Distributed Systems and Networks, 2003. Proceedings. POLICY
2003. IEEE 4th International Workshop on, pp. 93–96 (2003)

23. W3C. Web Services Addressing, W3C Member Submission (2004)
24. De Win, B.: Engineering Application-level Security through Aspect-Oriented Soft-

ware development. PhD thesis, Katholieke Universiteit Leuven (2004)

https://projects.ibbt.be/tcase/

Managing Concern Interactions in Middleware

Frans Sanen, Eddy Truyen, and Wouter Joosen

DistriNet, Department of Computer Science, K.U.Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{Frans.Sanen, Eddy.Truyen, Wouter.Joosen}@cs.kuleuven.be

Abstract. In this paper, we define a conceptual model that describes the relevant
information about interactions between concerns that needs to be captured. We
have developed a prototype system that, starting from this model, can automat-
ically generate a set of rules that enables software developers to improve their
understanding of concerns in middleware and their interactions. This rule-base
is the basis for an expert system that can be queried about particular concern in-
teractions and a software engineering tool to support an application development
team.

1 Introduction

In this paper, we present a conceptual model that helps a software development
team to understand and manage the different interactions between typical concerns in
a component-based distributed application. In general, the conceptual model comple-
ments methods for building large and complex component-based distributed systems.
To demonstrate results, we have focussed on the particular application domain of mid-
dleware (see Section 2).

Nowadays, software applications are being increasingly complex and large-scale.
This is mainly because of two reasons. First, the number of different implemented con-
cerns has exploded. Concerns are similar to requirements in a broad sense of the word
(a more detailed definition of concerns will be given in Section 2). Secondly, and more
importantly, there are many (often hidden) interactions between all these different con-
cerns. Concerns are typically not completely orthogonal to each other, but can relate
to each other in a variety of different ways: they can either depend upon each other,
conflict with each other, exclude each other, etc... This makes it challenging for a devel-
opment team to understand, sustain, maintain, adapt and evolve contemporary software
applications.

There is a wide consensus in the software engineering community that in order to
manage large and complex software systems, one must rely on intensive separation of
concerns [29] and componentization [1]. Separation of concerns is not easy to achieve
however. Software development methods often only achieve a good separation of con-
cerns if sufficient application domain expertise is present within the development team.
We therefore believe that application domain expertise should be represented explicitly
as part of a conceptual model such that it can be shared and used during the course of
system evolution. The conceptual model we propose identifies and describes the differ-
ent concerns of importance in the middleware domain and provides the foundation for
the construction of reusable components.

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 267–283, 2007.
c© IFIP International Federation for Information Processing 2007

268 F. Sanen, E. Truyen, and W. Joosen

This paper addresses the following problems. Expertise about interactions between
concerns (and therefore components) is seldom made explicit. As a result, this knowl-
edge cannot be shared and used among a development team. In monolithic software,
concern interactions are often hidden in the implementation details of components. Yet,
we argue that concern interactions and expertise on how to resolve these also forms very
important domain knowledge as this leads to a better understanding of the application
domain. Despite the fact that modeling techniques exist that explicitly represent con-
cern interactions (e.g. [9,11]), few of these modeling techniques make the link between
concerns and implementation components, i.e., they provide no practical support to the
software developer for managing the interactions when he/she is in the course of creat-
ing, adapting or evolving the component composition of an application. This problem
statement will be elaborated upon in Section 2 using some scenarios.

Our contributions are threefold. Next to the conceptual model for representing con-
cern interactions we also propose to use reasoning techniques for detecting interactions
in a given concern composition. Third, as a proof of concept, but also as a useful tool,
we have implemented a solution in OWL [28] and Prolog [31]. The CIA (Concern In-
teraction Acquisition) expert system uses Prolog as a reasoning technique for detecting
interactions in a given concern composition. The acquisition of the interaction knowl-
edge to be captured in the conceptual model is realized through OWL. We consider this
expert system as a backend for various software development tools.

The rest of this paper is structured as follows. Section 2 motivates our research by
setting the scene and elaborates on some specific concern interactions in middleware we
want to investigate. We explain the proposed conceptual model in Section 3 and illus-
trate it with a running example. Section 4 discusses the prototype of the CIA (Concern
Interaction Acquisition) expert system. Finally, related work is discussed in Section 5.
We present a conclusion in Section 6.

2 Background and Motivation

2.1 Background

Management of concern interactions is a general problem that is relevant in many ap-
plication domains, such as telecommunications, middleware, email, thermo control,
policy-based, multimedia and other systems [5,6,7,12,17,20,23,24]. Our work is fo-
cused on the domain of common middleware services and all example concern inter-
actions and further details within this paper should be interpreted with respect to that
background.

Middleware is systems software that resides between the applications and the under-
lying operating systems [38]. Its primary role is to functionally bridge the gap between
application programs and the lower-level and heterogeneous software infrastructure. It
is used most often to support complex, distributed applications. It includes web servers,
application servers, content management systems, and similar tools that support appli-
cation development and delivery. Middleware is typically decomposed into four layers
[38], which are shown in Figure 1.

Managing Concern Interactions in Middleware 269

Fig. 1. The different layers in common middleware

– Host infrastructure middleware provides an abstraction layer that shields software
in the higher layers from the details of the underlying OS (Operating system). By
abstracting away the peculiarities of individual operating systems, many tedious
and error-prone aspects of sustaining networked applications via low-level OS pro-
gramming APIs are eliminated. Widely known examples are Sun’s Java Virtual
Machine [22], Microsoft’s .NET [40] and the ADAPTIVE Communication Envi-
ronment [39].

– Distribution middleware defines higher-level distributed programming models
whose reusable APIs and components automate and extend network programming
capabilities encapsulated by host infrastructure middleware [38]. One advantage
that is most cited for this middleware layer is that it provides networking trans-
parency to the programmer. CORBA ORB’s [26] and RMI [43] are two well-known
examples.

– Common middleware services are built upon distribution middleware. They define
higher-level domain-independent services that allow application developers to con-
centrate on programming business logic. Without these services, end-to-end capa-
bilities (such as transactional behavior, security, database connection pooling or
threading) would have to be implemented ad hoc by each networked application
over and over again. The form and content of these services will continue to evolve
as the requirements on the applications being constructed expand. Logical examples
here are CORBAservices [27], EJB technology [15] and .NET web services [40].

– Domain-specific middleware services are tailored to the requirements of partic-
ular domains, such as telecom, e-commerce, health care, process automation,
or aerospace. Unlike the other three middleware layers, which provide broadly
reusable horizontal mechanisms and services, domain-specific middleware services
are targeted at vertical markets.

270 F. Sanen, E. Truyen, and W. Joosen

2.2 Motivation

What are concerns in middleware? Concerns are similar to requirements in a broad
sense of the word, ranging from high-level requirements that are articulated in an early
stage of the software project1 to additional - often more detailed - requirements that are
generated when performing detailed design and implementation2. Moreover, the various
concerns embodied in current middleware can be situated from the lower-level host-
infrastructure and distribution software layers to the higher-level common and domain-
specific middleware services. For the sake of understanding, we use the term concern
throughout this paper both for requirements and the artefacts that realize or implement
these requirements in later stages of the software development lifecycle.

Common middleware services such as security, persistence and others correspond
naturally to a number of (mostly non-functional) concerns that typically can interact
with each other. Notice that there exist different sorts of interactions. We elaborate on
a classification of concern interactions in Section 3. We now discuss three motivating
examples of concern interactions. We provide some more detail regarding the common
middleware services that are involved as it is not our intention to come up with a com-
plete and exhaustive overview of existing common middleware services.

– In most cases, it is useless to have an authorization service without an authenti-
cation service. Authentication is the confirmation of a claimed set of attributes or
facts with a certain level of confidence by providing sufficient evidence thereof. For
example, providing your user name and password to your email client is a possible
way to authenticate a person, principal or entity. Authorization refers to (1) the per-
mission of an authenticated entity to perform a defined action or to use a defined
service or resource; (2) the process of determining, by evaluation of applicable per-
missions, whether an authenticated entity is allowed to have access to a particular
resource. Authorizing an entity E to perform an action A only makes sense if you
are sure that entity E effectively is entity E, i.e. entity E is authenticated. In other
words, authorization depends on authentication.

– Audit and confidentiality services are in conflict with each other. An audit service
is responsible for maintaining an audit trail, i.e. a record of events, in order to be
able to trace the activities and usage of a software system. Confidentiality refers
to the state of keeping the content of information secret from all entities but those
authorised to have access to it. An often used mechanism to realize confidentiality
is encryption, the process of obscuring information to make it unreadable without
special knowledge. Suppose data item X has to be kept secret, i.e. is confidential.
Is the goal to have only the encrypted version to be logged in case of an event in
which the data item X is involved and hence, compromising the readability and use-
fulness of the audit track? Or should the audit trail just refer to the plain data item
X, sacrificing a large part of its confidentiality. Clearly, both middleware services
correspond to conflicting concerns. The same conflict also arises between caching
and confidentiality. Caching refers to saving recently accessed data in a small fast
memory in order to speed up subsequent access to the same data.

1 E.g. the middleware should ensure confidentiality when information is exchanged between two
parties.

2 E.g. decrypted messages should never be cached.

Managing Concern Interactions in Middleware 271

– A transaction and authorization service also possibly conflict. A transaction service
handles units of interaction in a coherent and reliable way. Such units of interaction
have to happen in an all-or-nothing mode and must be either entirely completed
or aborted. An ideal transaction service guarantees all of the ACID (Atomicity,
Consistency, Isolation and Durability) properties for each transaction. Suppose an
entity starts a transaction. Consider for example the case where an employee starts
to update some parts of the personnel database of the company he is working for.
As soon as he tries to upgrade his monthly salary, the authorization service halts
the execution by indicating the denied permission. The transaction service hence
should no longer complete the started unit of interaction and abort.

We propose to explicitly capture this kind of interaction knowledge using a concep-
tual model that captures the most important concepts for representing concern inter-
actions (see Section 3). The CIA expert system we propose in Section 4 will enable
exploiting this knowledge as depicted in Figure 2. First of all, different domain experts
incrementally insert new interaction knowledge coming from their domain expertise
into the CIA system, based on the conceptual model. This corresponds to arrow (1) in
Figure 2.

Fig. 2. Exploiting concern interaction knowledge

Then, the expert system can be used in various composition activities during the soft-
ware development process, such as for example trade-off analysis [35], component de-
ployment [8] and concern composition. In this paper, we further investigate component
composition during application assembly by means of a visual software composition
tool. Suppose the user is creating a component composition using a visual composition
environment. As the user drags new components on the canvas, the composition tool
may query the CIA system about known interactions (see (2) in Figure 2). CIA then
uses reasoning techniques to detect the interactions that occur in the given component
composition. It will respond to the software composition tool with this list of interac-
tions and tactics for resolving them (3). The composition tool may present then this
knowledge to the user in its own notation. In the long run, a component framework
that can cope with adding components in a flexible and generic way could interpret
these tactics automatically. The internals of the CIA expert system will be discussed in
Section 4.

3 Conceptual Model

In this section, we present the conceptual model behind the CIA system. We start with
a general overview of the most important and top-level concepts in Section 3.1. In the

272 F. Sanen, E. Truyen, and W. Joosen

Fig. 3. A conceptual model for describing concern interactions

subsections thereafter, we will provide some more detail on some of these concepts.
Throughout the elaboration of our model, we will use our second motivating example
from section 2, the conflict between audit and confidentiality services, to illustrate the
different concepts and relationships between these concepts.

3.1 Overview

Our conceptual model provides a number of concepts in terms of which knowledge
about interactions between concerns can be acquired; it is thus a meta-model. It is aimed
at being sufficiently rich to allow all kinds of concern interactions for any kind of com-
ponent composition to be captured in a precise and natural way. The model for capturing
concern interactions knowledge can be represented as a conceptual graph where nodes
represent concepts and edges represent structuring links, similar to [11]. Figure 3 illus-
trates the most important portion of the conceptual model. Roughly spoken, a concern,
which is realised through one component, can be involved in one or more interactions.
Such an interaction is explained by one or more rules, which essentially are a relation-
ship (indicating the kind of interaction) between a number of predicates that in turn
each describe one concern.

Concerns. The central concept in our conceptual model is concern. As been said be-
fore, concerns are similar to requirements in a broad sense of the word that are realized
through one or more components, ideally one. Our model currently only deals with ap-
plications that implement a one to one mapping between components of concerns. In
the model, concerns are organised based on subconcern refinement relationships into
a specialization hierarchy. Hence, under the umbrella of this abstract concept are the

Managing Concern Interactions in Middleware 273

more concrete concerns and their subconcerns, in our case the common middleware
services and their subservices. Multiple inheritance within this concern specialization
hierarchy is inherently supported because of the underlying mechanism we use to im-
plement the conceptual model (see Section 4.2). We will discuss here only a small part
of this concern hierarchy in order to illustrate the approach. What is important is that
this concern hierarchy has to be based on a lot of domain expertise from within the
different domains to reach an as complete as possible state. At the second level (the
concern concept forms the root of the concern hierarchy), we distinguish between the
different layers in middleware: host infrastructure middleware, distribution middleware,
common middleware services and domain-specific middleware layers. In a third level,
each of these is further refined. E.g. the common middleware services node is refined
to specific common middleware services such as security, persistence, transactions, etc.
Additionally, each of these can be again decomposed. As an example, standard secu-
rity typically breakdowns into an authentication, authorization, audit, confidentiality,
integrity and non repudiation service [37]. The discussed part of the concern hierarchy
is shown in Figure 4.

Fig. 4. Portion of the concern hierarchy Fig. 5. Classification of concern interactions

Interactions. A concern can be involved in an arbitrary number of interactions with
one or more other concerns. To structure concern interactions and address their effective
management, we have devised a classification that distinguishes between different kinds
of interactions. This interaction classification is based on earlier work and intensive
workshop discussions [36,3] and is shown in Figure 5. We distinguish between five
different classes.

– Dependency covers the situation where one concern explicitly needs another con-
cern and hence depends on it. A dependency does not result in a problem or er-
roneous situation as long as the concern on which another one depends is ensured
to be present in the final component composition. E.g. authorization depends on
authentication.

– Conflict captures the situation of semantical interference: one concern that works
correct in isolation does not work correctly anymore when it is combined with

274 F. Sanen, E. Truyen, and W. Joosen

other concerns. In other words, a concern influences the correct working of another
one negatively. Typically, a conflict can be solved by mediation or performing a
trade-off analysis because the concerns, in a sense, are complementary. E.g. confi-
dentiality and audit are conflicting (cfr. Section 2.2).

– Choice defines the interaction between two equivalent concerns. In other words,
there is no need to have the components realizing both concerns deployed because
their net effect will be the same. However, doing so won’t give any problems. E.g.
one of multiple authentication services gets chosen.

– Mutex encapsulates the interaction of mutual exclusiveness of concerns. Realizing
one of both concerns prohibits the use of the other one. No mediation is possible be-
cause the concerns are not complementary: only one of them can be used, the other
cannot. E.g. an extensive audit can compromise a certain strong timing constraint.

– Assistance arises when a concern influences the correct working of another concern
positively and hence assists it. There can be no doubt that this type of interaction is
a positive one. Typically, when a concern assists another concern, extended func-
tionalities become possible and extra support is offered. E.g. caching encrypted
data assists confidentiality by improving performance.

Predicates. The third essential relationship for a concern shown in our conceptual
model is the fact that a concern will be described by a predicate. Predicates enable
us to describe the semantics of a specific concern. A predicate always has the format
illustrated below. The definition of each predicate consists of two parts: a head, indi-
cating the concern that is being described, and a number of parameters that are used to
add all the concepts and values that are relevant for a complete description of a specific
concern. Example definitions of the audit and confidentiality concerns in pseudo-code
are shown in lines (2) and (3). (2) describes the audit concern in terms of four infor-
mation items or parameters: entity, action, object and result. At all times, the semantics
of the predicate is that all events where an entity Entity (e.g. a user) performing an
action Action (e.g. a read operation) on an object Object (e.g. a data item) resulted
in Result is recorded. Similarly, the confidentiality predicate can used to express that
an object Object (e.g. a data item) is confidential.

(1) <head> (<param1>, ..., <paramN>)
(2) audit (Entity, Action, Object, Result)
(3) confidentiality (Object)

An important characteristic of these predicates is their language and technology inde-
pendence. Moreover, if we start from the observation that for each predicate, including
for its head and parameters, an unambiguous definition exists, our approach is very intu-
itive. On the contrary, a mapping from this conceptual level to a lower language specific
level will be needed in future work to ensure that a predicate at all times reflects the cor-
rect runtime state of the application components and the middleware environment.

Rules. As depicted in Figure 3, our idea is to have each interaction between concerns
explained by one or more rules. A rule essentially is a relationship between two pred-
icates. It explains the context in which a specific interaction occurs by means of these

Managing Concern Interactions in Middleware 275

predicates. Secondly, it also indicates the kind of interaction depending on the relation-
ship a rule is associated with. There are five relationships included in our conceptual
model corresponding to the five kinds of interactions we defined:

– depends_on, indicating a dependency,
– conflicts_with, indicating a conflict,
– mutex, indicating a mutual exclusion,
– one_of, indicating a choice, and
– assists, indicating an assistance.

We also take into account the concept of an optional condition which enables us to take
certain conditions into account when describing an interaction. For example, if a con-
flict only appears under the runtime circumstances where battery power is low (as in
[36]), we can express that. If we now look at our example, the interaction between audit
and confidentiality clearly is a conflict, because both services operate correctly in isola-
tion, but when they are composed, mediation is necessary to regulate their coexistence.
Therefore, the rule explaining the interaction in pseudo-code is

for each Object o: audit(_,_,o,_) conflicts_with confidentiality(o)

It states that when certain objects (such as data items) both are required to be confiden-
tial and be part of events that need to be audited there is a conflict between audit and
confidentiality.

Others. Next to the information elaborated upon above, we obviously are also inter-
ested in possible solutions of specific interactions. This information need is reflected
into the concepts time of response and type of response. It is clear that some stages
of the software development lifecycle are more appropriate than others when trying to
cope with a certain interaction. E.g. dependencies typically will be taken care of dur-
ing the architecture phase, while conflicts potentially occur at runtime and need to be
handled in later stages if they were overlooked during requirements analysis. The type
of response concept represents the information definining an appropriate response to a
specific interaction into more detail. Both can be considered as a sort of tactics for solv-
ing specific interactions. The details for specifying such tactics are subject of ongoing
work. For now, a tactic compares to a textual description of the different alternatives
to resolve the interaction. The remaining example concept is used to illustrate an in-
teraction with a concrete motivating example for a better understanding of a specific
interaction.

4 CIA Expert System

In this section, we sketch the main architectural building blocks of the CIA (Concern
Interaction Acquisition) expert system, again illustrated with our running example of
the confliciting audit and confidentiality services. In Section 4.1, we present the high-
level architecture of our expert system. Next, we provide the most important details
about the OWL implementation of our conceptual model in Section 4.2. In Section 4.3,
we proceed by discussing the use of Prolog for detecting interactions. Finally, we revisit
the audit and confidentiality example conflict in Section 4.4.

276 F. Sanen, E. Truyen, and W. Joosen

Fig. 6. Architecture of the CIA expert system

4.1 Overview

The expert system is built upon two technologies. Firstly, OWL is used together with
the Protégé [32] environment for representing knowledge about interactions. Secondly,
we use Prolog for querying and reasoning about knowledge from the database. Note
that OWL also provides some form of reasoning that is limited to class and instance
inferences, which is not enough to express our interaction rules. Figure 6 shows how
these two technologies are used together. Expertise about interactions between concerns
is added to the OWL ontology by domain experts who use the Protégé graphical user
interface for this. The OWL representation is generated by Protégé. Subsequently, the
acquired interaction knowledge is automatically transformed into a set of Prolog rules.
Secondly, a software development (SD) tool has to provide a specification of a certain
concern composition to be investigated for potential concern interactions. Essentially,
this specification consists of a list of the selected concerns. Based on this list, a set
of Prolog facts is generated that contains all the predicate definitions that describe the
listed concerns. Both the set of Prolog rules and Prolog facts are fed into a Prolog
engine that through reasoning can detect all the interactions that occur in the given
concern composition. This list of interactions finally is presented back to the software
development tool. We consider the available concern interaction knowledge to be rather
stable in time while, on the contrary, concern composition specifications can easily vary
greatly for different concern interaction acquisition requests. We now zoom into the use
of OWL, Protégé and Prolog. Finally, we illustrate the whole on our running example.

4.2 Ontology-Based Representation of Concern Interaction Knowledge

To start with, we implemented the conceptual model under the hood of the CIA expert
system as an OWL ontology in Protégé, a widely known open source ontology editor
and knowledge-base framework. By definition, an ontology is a data model that repre-
sents a domain (in our case concern interactions) and can be used to reason about the
objects in that domain and the relations between them. Ontologies are commonly used
as a form of knowledge representation for a variety of purposes including inductive
reasoning, classification, problem solving techniques and to facilitate communication
and information sharing. They are generally made up of concepts (classes), relations
between these classes and characteristics of individual classes. OWL stands for Web
Ontology Language and it is designed for use by applications that need to process the

Managing Concern Interactions in Middleware 277

content of information. OWL facilitates greater machine interpretability of content than
that supported by XML, RDF, and RDF Schema by providing additional vocabulary
along with a formal semantics [28]. Protégé is capable of automatically generating the
OWL representation and it also assists the domain experts as it automatically checks
the consistency of the inserted knowledge and also automatically completes it with new
inferred knowledge.

4.3 Reasoning

We generate a set of Prolog [31] rules based on the OWL implementation of our concep-
tual model that serves as our concern interaction knowledge base. We wrote a parser in
Java using XPath [44] enabling the transformation of the OWL code3 into a set of Pro-
log rules. We explicitly did not opted for existing tools that combine OWL and Prolog,
which we motivate in Section 5. Next to concern interaction expertise that is expected
from domain experts, the CIA system also requires the specification of a given con-
cern composition from a software development tool. The selection of the concerns to
be composed for example can be done by drag and dropping them onto a canvas. The
list of all concerns within such a specification is deduced from the knowledge database.
Based on this list of concerns, we select the corresponding predicates that describe these
concerns out of our ontology. It is exactly this list of predicates that we use as the sec-
ond input for the Prolog engine. The engine will match the set of facts against the set
of Prolog rules. The reasoning then results in the set of interactions that occur within
the specified concern composition. Via these interactions, we can again query the OWL
ontology for tactics on how to solve the interactions.

4.4 Our Example Revisited

In order to illustrate the steps that allow us to have a set of Prolog rules, we
show the example definition of the conflict between audit and confidentiality by
providing some snapshots of its OWL representation that is generated by Protégé
in Figure 7. Lines 1 – 6 cover the definition of the interaction with as name
ConflictBetweenAuditAndConfidentiality. The definition indicates the
type of the interaction (line 2) which can be concluded automatically through OWL
reasoning based on the relationship of the rule that explains this interaction. This rule
is mentioned at line 5 and defined in lines 25 – 31. Lines 3 and 4 reference the con-
cerns that are involved in this interaction. Both, audit and confidentiality, are described
respectively in lines 7 – 15 and 16 – 24. Each concern lists the different interactions it
is involved in (lines 9 – 10 and 18 – 19), the components it is realised by (lines 11 –
12 and 20 – 21) and the different predicate instances that describe the concern under
consideration (lines 13 – 14 and 22 – 23). Notice that the latter ones match with the
predicates contained within the description of the rule (lines 29 –30) that explains the
original interaction. Finally, lines 32 – 38 give the representation of the audit predicate
(the one for confidentiality is similar), indicating the head and the relevant parameter.

3 We used RDF as the syntax for presenting the OWL ontology because it is more structured and
consistent than Protégé’s standard abbreviated OWL syntax and, hence, simplifies the parsing
work.

278 F. Sanen, E. Truyen, and W. Joosen

Our parser will start looking for all known rules that explain an interaction together
with their specific relationship and the predicates that are contained within each rule,
followed by getting the concerns that are involved in the interaction a rule describes. As
a result, the following Prolog code can automatically be generated and matched against
the facts based on this OWL code.

% ConflictBetweenAuditAndConfidentiality rule
conflicts_with(audit,confidentiality) :-

audit(_,_,Object,_),
confidentiality(Object).

% Facts if the audit and confidentiality service are selected
audit(entity,action,object,result).
confidentiality(object).

5 Related Work

5.1 Interaction Modeling

Chung et al. [9] have defined the NFR framework for representing and analyzing non-
functional requirements (NFRs). The framework provides a goal-oriented approach for
dealing with NFRs and is intended to help developers produce customized solutions by
considering characteristics of the particular domain and system being developed. An
essential part of their approach is the notion of softgoal interdependency graphs. These
are graphs that represent softgoals and their interdependencies. Such a graph maintains
a complete record of development decisions and design rationale in a concise graphical
form. A softgoal corresponds in a way to our concern concept. In their work, the inter-
dependencies between softgoals can be of various natures: refinements, contributions,
operationalizations, correlations etc. Under the umbrella of their notion of correlations,
interactions can be modelled. However, they only take into account conflicts. A NFR
type catalogue is another artefact in their work which resembles our concern hierarchy
a lot.

Feature models represent hierarchies of properties of domain concepts [33,10]. The
properties are used to discriminate between concept instances, i.e. systems or applica-
tions within that domain. The properties are relevant to end users. At the root of the
hierarchy there is the so-called concept feature, representing a whole class of solutions.
Below of this concept feature there are hierarchically structured sub-features showing
refined properties. Feature models are used for development and application of software
product lines, i.e. for defining products and configurations, for describing possibilities
of a product line, and for establishing new products and adding new properties to a
product line [18]. Compared to our work, a feature model matches more or less with
our concern hierarchy. An instance of the feature model corresponds to a selected set
of concerns in our approach. In [4], the authors use an algebraic theory for modeling
interactions in feature-oriented designs in which feature interactions are modeled as
derivatives.

Work on integrating ontologies and rules also exists. Rules are the next layer of the
Semantic Web [41] that is the subject of currently ongoing research. Ontologies form

Managing Concern Interactions in Middleware 279

Fig. 7. Part of the OWL representation of a concern interaction

the highest layer that is sufficient mature and are a first step from adding reasoning to
pure domain descriptions. The combination of both promises to offer enhanced repre-
sentation and reasoning capabilities. SweetProlog [21] is a system for translating web
rules into Prolog enabling an integration of ontologies and rules. This is achieved via a
translation of OWL ontologies and OWLRuleML rules into a set of facts and rules in
Prolog. Antoniou et al. [2] implemented DR-Prolog, a powerful declarative system sup-
porting rules, facts and ontologies together with all major Semantic Web standards. We
deliberately chose not to use these systems, because the rules we need are already mod-
elled through our OWL ontology implementation of the conceptual model and hence,
can be easily generated from the ontology itself.

280 F. Sanen, E. Truyen, and W. Joosen

5.2 Interaction Detection and Resolution

Wohlstadter et al. [42] have presented GlueQoS, a middleware-based approach to man-
aging dynamically changing QoS requirements (quality of service issues related to non-
functional requirements such as security, reliability and performance) of components.
They use policies to advertise non-functional capabilities. These policies vary at run-
time with operating conditions. GlueQoS also incorporates middleware enhancements
to match, interpret, and mediate QoS requirements of clients and servers at deployment
time and/or runtime. The latter is their main contribution. In their work, they assume
a fixed ontology of features, with all interactions explicitly identified ahead of time.
The link with our work here is obvious. Moreover, they also provided a classification
of feature interactions. The similarities with our categorization makes us believe both
interaction classifications are very close to a sweet spot. Another piece of work on con-
flicts in policy-based distributed systems management is done by Lupu et al. [24].

In the field of aspect-oriented software development [16], aspect interactions repre-
sent one of the biggest remaining challenges. In this context, Pawlak et al. [30] propose
CompAr, a language that allows programmers to abstractly define an execution do-
main, advice codes and their often implicit execution constraints. In our opinion, the
high level of abstraction the language offers to specify very generic aspect definitions
is their major contribution. Moreover, their language enables the automatic detection
and solving of aspect-composition issues (interactions between aspects) of around ad-
vices. A number of other approaches with respect to automatic detection and resolution
of interactions exist [14,19,34,13]. For example, [14] proposes a language-independent
technique to detect semantic conflicts among aspects that are superimposed on the same
join point. Their approach is based on a resource-operation model. They argue that a
formalization of the complete behaviour of a component is not realistic; we agree. How-
ever, they don’t motivate that their abstraction mechanism is designed in such a way that
it is possible to represent the essential behaviour of an aspect. [19] describes interfer-
ence (i.e. interactions) between aspects at the semantic level, irregardless of any overlap
among joinpoints or variables. Their definition of interference resembles our definition
of conflicts a lot. They assume that each aspect already has a specification and is cor-
rect with respect to that specification. The specification of an aspect consists of a set
of assumptions and guarantees which both are expressed in temporal logic. Based on
these specifications, they want to generate proofs that one aspect does not interfere with
another one.

6 Conclusion

In this paper, we presented a conceptual model that helps a software development team
to understand and manage the different interactions in a component-based distributed
application. To demonstrate results, we have focussed on the particular application
domain of common middleware services. However, we are convinced that the mod-
els and techniques presented here are equally applicable to other domains as well. In
general, the conceptual model complements methods for building large and complex
component-based distributed systems. We addressed two problems. First, we defined
a conceptual model for explicitly representing knowledge about interactions between

Managing Concern Interactions in Middleware 281

concerns and how to solve these. As a result, this knowledge can be shared and used in
the course of system evolution. Secondly, we provide practical support to the software
developer for managing the interactions when he/she is creating, adapting or evolving
the component composition of an application. Finally, we discussed our prototype im-
plementation of the CIA expert system that uses a concern composition specification as
input for detecting interactions that occur in the given set of concerns.

References

1. Booch, G., Kozaczynski, W.: Component-Based Software Engineering. Software, IEEE, vol.
15(5), pp. 34–36 (1998)

2. Antoniou, G., Bikakis, A.: DR-Prolog: A System for Defeasible Reasoning with Rules and
Ontologies on the Semantic Web. IEEE Transactions on Knowledge and Data. Engineer-
ing 19(2), pp. 233–245 (2007)

3. Aspects, Dependencies and Interactions Workshop, ECOOP 2006, Nantes, France,
http://www.aosd-europe.net/adi06/

4. Liu, J., Batory, D., Nedunuri, S.: Modeling interactions in feature oriented systems, Interna-
tional Conference on Feature Interactions (ICFI) (June 2005)

5. Blair, L., Pang, J.: Feature interactions - Life beyond traditional telephony, FIW, pp. 83–93
(2000)

6. Blair, L., Blair, G., Pang, J.: Feature interaction outside a telecom domain. Workshop on
Feature Interaction in Composed Systems (2001)

7. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: A critical
review and considered forecast. Computer Networks: The. International Journal of Computer
and Telecommunications Networking archive 41(1), 115–141 (2003)

8. CAM/DAOP, Component-Aspect Model / Dynamic Aspect-Oriented Platform,
http://caosd.lcc.uma.es/CAM-DAOP/index.htm

9. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishing, Norwell (2000)

10. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison Wesley, London (2000)
11. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acquisition.

Science of Computer Programming 20, pp. 3–50 (1993)
12. Diaz Pace, J.A., Trilnik, F., Campo, M.R.: How to handle interacting concerns?, Workshop

on Advanced for Separation of Concerns in OO Systems, OOPSLA 2000, Minneapolis, USA
(2000)

13. Douence, R., Fradet, P., Sudholt, M.: Composition, reuse and interaction analysis of state-
ful aspects, International Conference on Aspect-Oriented Software Development (AOSD04)
(2004)

14. Durr, P., Bergmans, L., Aksit, M.: Reasoning about Semantic Conflicts between Aspects. In:
Proceedings of Aspect, Dependencies, and Interactions (ADI) Workshop (2006)

15. Enterprise JavaBeans Technology,
http://java.sun.com/products/ejb/white_paper.html (1998)

16. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-oriented software development. Addison-
Wesley, London (2004)

17. Hall, R.J.: Feature interactions in electronic mail. In: Proceedings of the 6th International
Workshop on Feature Interactions in Telecommunications and Software Systems, IOS Press,
Amsterdam (2000)

18. Kang, K.C., Lee, K., Lee, J.: FOPLE - Feature Oriented Product Line Software Engineering:
Principles and Guidelines. In: Pohang University of Science and Technology (2002)

http://www.aosd-europe.net/adi06/
http://caosd.lcc.uma.es/CAM-DAOP/index.htm
http://java.sun.com/products/ejb/white_paper.html

282 F. Sanen, E. Truyen, and W. Joosen

19. Katz, S.: Aspect categories and classes of temporal properties. In: Rashid, A., Aksit, M.
(eds.) Transactions on Aspect-Oriented Software Development. LNCS, vol. 3880, pp. 106–
134. Springer, Heidelberg (2006)

20. Keck, D.O., Kuehn, P.J.: The feature and service interaction problem in telecommunications
systems: A survey. IEEE Transactions on Software Engineering, vol. 24(10) (1998)

21. Laera, L., Tamma, V., Bench-Capon, T., Semeraro, G.: SweetProlog: A system to integrate
ontologies and rules. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp.
188–193. Springer, Heidelberg (2004)

22. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley, London
(1997)

23. Liu, X., Huang, G., Zhang, W., Mei, H.: Feature interaction problems in middleware services.
International Conference on Feature Interactions (ICFI) (June 2005)

24. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management. IEEE
Transactions on Software Engineering 25(6), pp. 852–869 (1999)

25. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice-Hall, Inc., Englewood
Cliffs (1997)

26. Object Management Group, The Common Object Request Broker: Architecture and Specifi-
cation Revision 2.4, OMG Technical Document (2000)

27. Object Management Group, CORBAservices: Common Object Service Specification, OMG
Technical Document (1998)

28. OWL Web Ontology Language, Overview,
http://www.w3.org/TR/owl-features/

29. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules, Communi-
cation of the ACM, vol. 15(12) (1972)

30. Pawlak, R., Duchien, L., Seinturier, L.: CompAr: Ensuring safe around advice composition.
7th IFIP International Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS05) Athens, Greece (June 2005)

31. SWI-Prolog’s Home, http://www.swi-prolog.org/
32. The Protégé Ontology Editor and Knowledge Acquisition System,

http://protege.stanford.edu/
33. Riebisch, M.: Towards a More Precise Definition of Feature Models. In: Riebisch, M.,

Coplien, J.O., Streitferdt, D. (eds.) Modelling Variability for Object-Oriented Product Lines,
BookOnDemand Publ. Co., Norderstedt (2003)

34. Rinard, M., Salcianu, A., Bugrara, S.: A classification system and analysis for AO programs.
In: Proceedings of the Twelfth International Symposium on the Foundations of Software
Engineering. Newport Beach, CA (November 2004)

35. Sampaio, A., Chitchyan, R., Rashid, A., Rayson, P.: EA-Miner: a tool for automating aspect-
oriented requirements identification. In: Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering (ASE) (2005)

36. Sanen, F., Truyen, E., Joosen, W., Jackson, A., Nedos, A., Clarke, S., Loughran, N., Rashid,
A.: Classifying and documenting aspect interactions. In: Coady, Y., Lorenz, D., Spinczyk, O.,
Wohlstadter, E. (eds.) Proceedings of the Fifth AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software, pp. 23–26. Bonn, Germany (2006)

37. Sanen, F., Truyen, E., Joosen, W., Loughran, N., Rashid, A., Jackson, A., Nedos, A., Clarke,
S.: Study on interaction issues (2006) AOSD-Europe Deliverable 44
http://www.aosd-europe.net/deliverables/d44.pdf

38. Schantz, R., Schmidt, D.C.: Middleware for Distributed Systems. In: Wah, B. (ed.) Encyclo-
pedia of Computer Science and Engineering (2007)

39. Schmidt, D., Huston, S.: C++ Network Programming: Resolving Complexity with ACE and
Patterns. Addison-Wesley, MA (2001)

http://www.w3.org/TR/owl-features/
http://www.swi-prolog.org/
http://protege.stanford.edu/
http://www.aosd-europe.net/deliverables/d44.pdf

Managing Concern Interactions in Middleware 283

40. Thai, T., Lam, H.: .NET Framework Essentials. O’Reilly (2001)
41. W3C Symantic Web Activity, http://www.w3.org/2001/sw/
42. Wohlstadter, E., Tai, S., Mikalsen, T., Rouvellou, I., Devanbu, P.: GlueQoS: Middleware to

Sweeten Quality-of-Service Policy Interactions. In: Proc. of the International Conference of
Software Engineering (2004)

43. Wollrath, A., Riggs, R., Waldo, J.: A Distributed Object Model for the Java System. USENIX
Computing Systems (1996)

44. XML Path Language, http://www.w3.org/TR/xpath

http://www.w3.org/2001/sw/
http://www.w3.org/TR/xpath

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 284–295, 2007.
© IFIP International Federation for Information Processing 2007

An Improved Genetic Algorithm for Web Services
Selection*

Sen Su, Chengwen Zhang, and Junliang Chen

State Key Lab of Networking and Switching Technology
Beijing University of Posts & Telecommunications (BUPT), 187#

10 Xi Tu Cheng Rd., Beijing 100876, China
zwjcbj2007@gmail.com, {susen, chjl}@bupt.edu.cn

Abstract. An improved genetic algorithm is presented to select optimal web
services composite plans from a lot of composite plans on the basis of global
Quality-of-Service (QoS) constraints. The relation matrix coding scheme of
genome is its basis. In this genetic algorithm, an especial fitness function and a
mutation policy are proposed on the basis of the relation matrix coding scheme
of genome. They enhance convergence of genetic algorithm and can get more
excellent composite service plan because they accord with web services
selection very well. The simulation results on QoS-aware web services selection
have shown that the improved genetic algorithm can gain effectively the
composite service plan that satisfies the global QoS requirements, and that the
convergence of genetic algorithm was improved very well.

1 Introduction

Web service is a software application identified by an URL. The most-promising
aspect of web service is the ability of engaging other web services in order to realize
higher-order business transactions. Some interoperation mechanisms [1] are enabled
in a service-oriented architecture. The framework of web services creates new
possibilities to assemble distributed web services. How to create robust service
compositions becomes the next step [15] and there are a lot of researches concentrated
on it [8,9,16,17].

A composite service has specific functions that can be divided into some
component functions. These component functions are accomplished by component
services respectively. If the dependencies among component functions are represented
through state charts that were used in [9], there are usually many available paths that
can finish the same composite functions. So, web service composition has many
scenarios [3], such as probabilistic invocation, parallel invocation, sequential
activation and so on. If every component function is signified by a task, an execution
path of a composite service can be constructed by a sequence of tasks including an

* The work presented in this paper was supported by the National Basic Research and

Development Program (973 program) of China under Grant No. 2003CB314806; 863
program of China under Grant No.2006AA01Z164； the Program for New Century Excellent
Talents in University of China under Grant No. NCET-05-0114.

 An Improved Genetic Algorithm for Web Services Selection 285

initial task and a final task. In the phase of running time, some candidate services with
same functions and different QoS attributes are discovered for every task. Thus, for
each path, there are various composite plans corresponding to the specific function of
composite service. Moreover, since component services with the same functions and
different QoS are increasing with the proliferation of web services, the composite size
should be larger and larger. For example, there are only one path that accords with the
composite functions, 15 component functions in this composite path, and average 10
candidate web services for each component function. In this kind of composition
scenario, the composite size should be about 1015. Furthermore, since web services
requesters always express both their functional requirements and their global QoS
constraints set, it is needed to select which component services will be used in a given
composite service in order to maximize user satisfaction, select the best composite
plan from numerous plans and satisfy the consumers’ global QoS constraints. Hence,
web services selection with global QoS constraints plays an important role in web
services composition [2, 3]. In the past years, the researches about web services
selection have gained considerable momentums.

To figure out web services selection, some approaches are presented with the help
of semantic web [4, 5, 6], and the others are based on QoS attributes computation
[7, 8, 9, 10, 11, 23]. But the latter approaches are the more suitable solutions
satisfying the global QoS requirements of web services selection. It is a combinatorial
optimization issue that the best combination of web services is selected in order to
accord with the global QoS constraints. Some traditional optimization techniques are
proposed in [7, 8, 9, 23]. However, finding a plan for quality driven web services
selection is NP-hard [11], so the effective strategies based on Genetic Algorithm (GA)
are introduced in [10, 11].

Genetic Algorithm is a powerful tool to solve combinatorial optimizing problems
[13]. It solves the formulated optimization problem using the idea of Darwinian
evolution. It is an iterative procedure that consists of a constant-size population.
Every individual describes a solution. Basic evolution operations, including
crossover, mutation and selection operations, make GA be apt to very effectively
perform global search. The design of genetic algorithm has the greatest influence on
its behavior and performance [12], especially the design of coding scheme of
chromosomes, fitness function, evolution operations and selection mechanism will
have direct effect on efficiency and global astringency of genetic algorithm. It is
necessary for GA to accord with characters of web services composition in order to
get global convergence.

In the literatures, a suitable genetic algorithm for web services selection with
global QoS constraints has not been taken into account, although the presented
genetic algorithms can attain service composition supporting QoS to some extent.
They always adopted the one dimension coding scheme that can not represent
effectively the composite service re-planning, cyclic paths. The one dimension coding
scheme can also not express all paths of assemble service at the same time. They did
not think more about how to overcome the premature phenomenon of GA. Therefore,
they did not suit effectively the issue about how to select the best composite plan from
many plans of many paths in order to satisfy global QoS constraints.

Following the above analyses, we proposed a novel relation matrix coding scheme
of chromosomes in [21], the relation matrix coding scheme suits with web service

286 S. Su, C. Zhang, and J. Chen

composition with global QoS constraints more than the one dimension coding
scheme. In [20], we presented a population diversity handling mechanism. But, the
fitness function in [20] is not very fit one for many QoS properties with large quantity
difference. Furthermore, the mutation policy should be designed on the basis of
relation matrix coding scheme. Aiming at these issues, we discuss how to construct
fitness function, mutation policy and present an improved fitness function and an
improved mutation policy. Finally, the simulated results show that improved fitness
function and improved mutation policy accord with QoS-aware web services selection
and relation matrix coding scheme.

The remainder of this paper is organized as follows. After a review of the literature
of web services selection in section 2, Section 3 presents the discussion of fitness
function and mutation policy in detail. Section 4 describes simulations about fitness
functions and mutation policies and discusses results aiming to support the work.
Finally, our conclusions are given in section 5.

2 Quality Computation-Based Selection of Web Services

According to Std. ISO 8402 [18] and ITU E.800 [19], QoS may include a number of
nonfunctional properties such as price, response time, availability and reputation.
Thus, QoS value of a composition service can be achieved by fair computation of
QoS of every component web services. In this section, some traditional optimization
techniques [7, 8, 9, 23] and Genetic Algorithm (GA) [10, 11] in the literatures are
discussed in detail.

The QoS computation based on QoS matrix is a representative solution. [7] ranked
web services by means of normalizing QoS matrix, however, it was only a local
optimization algorithm but not a global one for services selection. Other works in the
area of QoS computation include [8, 9], which proposed local optimization and global
planning. The local optimization approach could not take global QoS constraints into
consideration. For example, there are only one path that accords with the composite
functions, 15 component functions in this composite path, and average 10 candidate
web services for each component function. In this kind of composition scenario, the
composite size should be about 1015. When the size of composite service is very large,
the overhead of global planning is quite enormous. Hereby, both had limitation to
some extent. [23] proposed pattern-wise QoS selection, which split the difference
between the global planning selection and local optimization selection. Although its
execution is faster than a true global planning approach, it misses global perspective.
Furthermore, it takes a lot of cost on identifying pattern elements while the
composition patterns are very complex. Especially, it will work very badly if the
given user-defined QoS requirements go beyond all of offered QoS.

The above means are not able to resolve effectively the issue of web services
selection with global QoS constraints belonging to the class of NP-hard [10]. GA is
more suitable for this issue. But, GA can play an important role only while the
combinatorial size is very large. Some numerical simulations in [22] show that the
linear integer programming outperforms GA while the combinatorial size is small.
Two different GAs were proposed in [10, 11].

 An Improved Genetic Algorithm for Web Services Selection 287

In [10], binary strings of chromosome were proposed for service selection. Every
gene in chromosome represented a service candidate with values of 0 and 1. Thereby,
the more service candidates or web services clusters were, the longer chromosome
was. Since at most only single service candidate could be selected in each of web
services clusters, only one gene was "1" and others were "0" in all of genes of every
cluster. When the number of component services and the number of candidate
services of each component service are all very big, the length of genome will be very
long. This kind of manner resulted in poor readability. Further, the authors proposed
only coding manner of chromosome for service selection with little further
information about the rest parts of genetic algorithm, such as selection mechanism.

In [11], a genetic algorithm was also used to tackle the service selection problem.
The one dimension coding way of chromosome was proposed to express services
composition, and each gene represented an abstract service of composite service. The
value of abstract service was one of concrete services. The length of genome was
shorter than the one in [10]. The change of the number of concrete services could not
influence the length of genome. Therefore, the stability of genome length was better
than [10]. The coding way of chromosome and the fitness function were all of which
were proposed in [11], but without more information about the algorithm.

In [20], a genetic algorithm with population diversity handling is presented in order
to maximize user satisfaction during composition of web services. Evolution is
directed effectively through the conservation of the historical optimal population and
the competition between the historical optimal population and the current population.

In [21], a special relation matrix coding scheme of chromosomes is presented. It
suits with QoS-aware web service composition more than the one dimension coding
scheme. The relation matrix has the ability to represent simultaneously the composite
service re-planning, cyclic paths and many web service scenarios.

In addition to coding schemes, the other parts of genetic algorithm should also be
taken into account in order to accord into the special points of web services selection
with global QoS constraints, for example, fitness function, mutation policy.

3 Improved Genetic Algorithm

In this section, we present an improved genetic algorithm in order to resolve quality-
driven selection, mainly including the design of fitness function and mutation policy.
The relation matrix coding scheme is firstly reviewed because the mutation policy is
based on it.

3.1 Relation Matrix Coding Scheme

In [21], a special relation matrix coding scheme was introduced using neighboring
matrix. In the case of that the number of component services and dependencies among
component services in every path are different from each other, the relation matrix
coding schemes can express all paths of assemble service at the same time. The
coding scheme has the function to express not only the relation among tasks but also
paths information.

288 S. Su, C. Zhang, and J. Chen

In this matrix, "n" is the number of all tasks in the services composition. The
following is the definition of the relation matrix coding scheme.

(1) The gii is located at the main diagonal of the matrix for the ith locus of the
chromosome and presents a task. The possible values of gii are the following:

a) The number "0" that represents that the pointed task is not included in the
special services composition.

b) The number "-1" that represents that the pointed task is implementing while the
composite service re-planning.

c) The number "-2" that represents that the pointed task becomes invalid while the
composite service re-planning, such as all of candidate services of the pointed task
become invalid or the pointed task is canceled for some reasons.

d) The number "-3" that represents that the selected concrete service of the pointed
task has some changes while the composite service re-planning. These changes
include that the selected concrete service becomes invalid or some QoS constraints of
the selected concrete service have some changes.

e) If the number "t" represents that the sum number of concrete services of the
pointed task, any number in the range of [1, t] represents that the pointed task is
included in the special services composition and one concrete web service is selected.

(2) The gij represents the direct relation between the ith task and the jth task. Here,
i j≠ .

Before gij is defined, four values of k1, k2, k3 and k4 should be defined firstly. The
four values are adjustable and represent the different situations of parallel invocations.
They are boolean variables coded. They are integer number in hexadecimal idea (they
may have values: 100, 200, 400, 800, etc.). The following is the definition of gij:

a) The number "0" represents that the ith task is not the immediate predecessors of
the jth task.

b) The number "p" represents that the ith task is the immediate predecessors of
the jth task and the ith task invokes the jth task with probability "p". Here, 0 1p< ≤ .

c) The number "m" represents that the ith task is the immediate predecessors of
the jth task and the ith task invokes the jth task with "m" times. Here,
1 m < Min{k1, k2, k3, k4}≤ .

d) The number "k1" represents that all of parallel invocations of immediate
predecessors of the jth task belong to one identical parallel invocations group. The ith
task is one of the immediate predecessors.

e) The number "k2" represents that all of parallel invocations of immediate
successors of the ith task belong to the same group. The jth task is one of the
immediate successors.

f) The number "k3" represents that all of parallel invocations of immediate
predecessors of the jth task belong to the different groups. The ith task is one of the
immediate predecessors.

g) The number "k4" represents that all of parallel invocations of immediate
successors of the ith task belong to the different groups. The jth task is one of the
immediate successors.

Obviously, in the case of k3 and k4, it is necessary to seek a table of parallel
invocations to find out which parallel invocations belong the same group.

 An Improved Genetic Algorithm for Web Services Selection 289

By means of the combination of the values of m, p, k1, k2, k3, k4, many web
service scenarios, such as probabilistic invocation, parallel invocation, sequential
activation, etc, can be represented by the relation matrix. Additionally, the values of
m, k1, k2, k3, k4 should not influence the decomposition of the value of gij. For
example, if value of m is less than 100, values of k1, k2, k3 and k4 can be set as
0x100, 0x200, 0x400 and 0x800. Thus, value of gij can be decomposed precisely.

Following the definition of the relation matrix, the objects of the evolution
operators are all of elements along the main diagonal of the matrix. The chromosome
is made up of these elements. The other elements in the matrix are to be used to check
whether the created new chromosomes by the crossover and mutation operators are
available and to calculate the QoS values of chromosomes.

As stated the above, the abilities of the relation matrix are the following:

(1) The ability to seek simultaneously all of paths: since every locus of the
chromosome can randomly be set to value "0", the chromosome has the ability to
express all of paths of services composition.

(2) The abilities of the path re-planning and the task re-planning thanks to the
introduction of values of "-1/-2/-3" to gii.

(3) The ability to resolve the cyclic paths thanks to the introduction of values of
"m" to gij.

(4) The ability to represent simultaneously many web service scenarios, such as
probabilistic invocation, parallel invocation, sequential activation, etc.

The following is one example of the relation matrix coding scheme.

t 1 t 8

t 6

t 5

t 4

t 3
t 2

t 7

workf l ow
st ar t t ask end t ask

 l egend:

Fig. 1. Statechart of a web services composition

Figure 1 is one example of a web services composition. Its coding scheme is
shown in figure 2.

1

2

3

4

5

6

7

8

1 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

t

t

t

t

t

t

t

t

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Fig. 2. Coding scheme

In figure 2, all of numbers at the main diagonal of the matrix will be set at concrete
genome.

290 S. Su, C. Zhang, and J. Chen

3.2 Fitness Function

In [20], objective function is defined in (1) and it is named ObjectiveFunction 1(OF1 is
its abbreviation):

()

() .
()

j j
j

k k
k

Q w

f g
Q w

×
=

×

∑
∑

(1)

Where wj,wk∈[0,1], and wj,wk are real positive weight factors, represent the weight
of criterion j and k. By providing wj,wk respectively, end users show their favoritism
concerning QoS. The sum of all of them is 1. Qj and Qk denote values of the jth and
kth QoS properties of the individual respectively. All of negative QoS properties (for
example, price, time etc.) will be selected for the denominator (k). All of positive QoS
properties (for example, reputation, availability etc.) will be selected for the
numerator (j).

The formula (1) is not fit for the great quantity difference that QoS properties have.
For example, response time and availability have large quantity difference.
Furthermore, may be the same QoS properties have huge quantity difference in
different web services. So, different QoS properties have not same influence on
fitness function. It is not equitable for these QoS properties with low quantity level.

A method should be taken to transform values of all QoS properties into the range
of [0,1]. In this way, all of QoS properties will have same influence on fitness
function. A proportional fitness function is defined in formula (2) and it is named
ObjectiveFunction 2(OF2 is its abbreviation):

()
1

m
f w Qi i

i
′∑= ×

=
 (2)

In formula (2), wi is the same as formula (1). '
Qi denote the value of the ith QoS

property of the individual. For negative QoS properties, values are scaled according to
(3). For positive QoS properties, values are scaled according to (4).

m a x
m a x m i n 0' m a x m i n

m a x m i n1 0

Q Q ii i f Q Qi i
Q QQ i ii

i f Q Qi i

⎧ −⎪ − ≠⎪ −= ⎨
⎪
⎪ − =⎩

(3)

m i n
m a x m i n 0' m a x m i n

m a x m i n1 0

Q Qi i i f Q Qi i
Q QQ i ii

i f Q Qi i

⎧ −⎪ − ≠⎪
−= ⎨

⎪
⎪ − =⎩

(4)

In formula (3) and (4), maxQi and minQi are the maximum and minimum of the ith

QoS property of all individuals respectively. Qi is the same as formula (1).

In order to express the difference of negative QoS properties and positive QoS
properties further, the formula synthesizing the formula (1) and (2) is provided in
formula (5) and it is named ObjectiveFunction 3(OF3 is its abbreviation):

min

max min min
max min

min max min

max min

()

, =0 then 1
()

j j
j

j j j k k
k k

k k k k
k

k k k

Q Q
w

Q Q Q Q
f if Q Q

Q Q Q Q
w

Q Q

−
×

− −= − =
− −×
−

∑

∑

(5)

 An Improved Genetic Algorithm for Web Services Selection 291

In formula (5), positive QoS properties are in the place of numerator and negative
QoS properties are in denominator. The fitness function with penalty character is
defined in formula (6):

()
n

j
j

j jMax jMin

P
Fit f

R R
λ

=1

= − ×
−∑

(6)

In formula (6), Pj represents the calculation value of a Qi or some Qis and these
values are limited by a quality constraint. RjMax, RjMin are the maximum value and
minimal value of calculation formula of the No.j quality constraint in all of web
services composite plans. n is the number of quality constraints. λj is the calculation
value of a Qi or some Qis and these values are limited by a quality constraint. It is a
parameter used to adjust the scale of penalty value. The reason why λj is used: the
higher users show their favoritism is, the bigger the penalty value is. Formula (7) is
the definition of △Pj:

min{ , }

{ 0

max{ , }

j jMax jMax

j

jMin jMin j

P R P

P

R P P

−
Δ =

−

min{ , }

max{ , } min{ , }

max{ , }

j jM ax jM ax

jM in jMin j jM ax jM ax

j jM in jM in

if P R P

if R P P R P

if P R P

 >
≤ ≤

<

(7)

In formula (7), PjMax, PjMin are the maximum value and minimal value of the No.j
quality constraint respectively.

In section 4, some simulations about these fitness functions will be provided.

3.3 Mutation Policy

Here, some mutation policies are proposed and discussed on the basis of the relation
matrix coding scheme.

The first one is named MutationPolicy 1(MP1 is its abbreviation.): The probability
of mutation is for the locus. Every locus in every chromosome will be asked whether
mutating or not according to mutation probability. The child chromosome must be the
same path as the mother chromosome during mutation operation. After the mutation
operation, only the chromosome with the biggest fitness values will survive among
the mother and child chromosomes. In fact, the mutation operation enhances the
ability to search composition plans of every path.

The second one is named MP2: In the standard genetic algorithm, the probability
of mutation is for the locus of chromosome. Here, in order to promote the probability
to create different paths from the mutated path, the probability of mutation is for the
chromosome instead of the locus. The concrete policy is as follows: before mutation
operation of every chromosome, the probability of mutation is used to confirm
whether the chromosome mutates or not. If mutation, the object path will be
confirmed firstly whether it is the same as the current path expressed by the current
chromosome. If difference, the object path will be selected from all available paths
except the current one. If the object is itself, the new chromosome will be checked
whether the new chromosome is the same as the old chromosome. Same chromosome
will result in the mutation operation again. If the objects are different paths from the
current path, a new chromosome will be created on the basis of the object path.
Obviously, it is not necessary to check whether new and old chromosomes are same.

292 S. Su, C. Zhang, and J. Chen

The third one is named MP3: It is similar to MP2. The different point is that the
object path of the current path will be selected directly from all of available paths
including the current path. This means that the objects are permitted to have the same
paths as the current path

The fourth one is named MP4: The probability of mutation is for the locus. During
the mutation of one task, the selection probability of every concrete service and the
one of the "0" value are equal.

In section 4, some simulations about these mutation policies will be provided.

4 Experiments

To verify the excellence of GA we have proposed, numerous simulation comparisons
had been performed on QoS-aware web services selection. All experiments were
taken on same software and hardware, which were Pentium 1.6GHz processor,
512MB of RAM, Windows XP Pro, development language JAVA, IDE Eclipse 3.1.
Same data were adopted for two compared GAs, including workflows of different
sizes, 15-50 concrete web services for each task and 5 QoS data for each web service.
A simplified representation of web service was used, including an ID number, some
QoS data that were retrieved randomly in the range of defined values.

The following is about how these simulation data are produced. Firstly, there are
three simulated compositions in all: the number of component functions is 10, 25 and
30 respectively. Composition state charts are used to represent the dependencies
among component functions. Secondly, candidate services for each task are randomly
created with one ID and values of five QoS properties. Finally, some global
constraints of some QoS properties are provided for every composition. Then, these
three composition situations are saved for the use later. Comparisons will be made in
the same composition situation. In the three composition situations, the composite
size is all very large. For example, there are 64 paths in the case of tasks 30, average
19 tasks in every path and average 15 candidates services for every task. Thus, the
composite size is very enormous: 64×1519.

The compared GAs were set up with same population size, crossover operation and
probability, mutation probability. QoS model in [9] was used for them. The penalty
technique is used for constrained optimization problems in algorithms. These
algorithms have same selection mechanism of individuals, that is the "roulette wheel
selection".

The fitness function and the mutation policy are the different points among the
compared GAs.

4.1 Experiments on Fitness Function

There are three kinds of fitness function comparison between GA with the relation
matrix coding scheme (the capital letter "A" represented it) and GA with the one
dimension coding scheme (the capital letter "B" represented it). The three kinds of
fitness function comparison are based on OF1, OF2 and OF3 respectively.

 An Improved Genetic Algorithm for Web Services Selection 293

The following is the experiments of the three kinds of fitness function comparison.
Some same parameters are population size 400, crossover probability 0.7, mutation
probability 0.1, iterations 500, running times 50. The unit of time is ms. As shown in
table 1, the statistic data of the average fitness, time and generation of the maximal
fitness value were collected.

Table 1. Fitness, time and generation

Tasks
Num

Comparison
Name

Average
Maximum

Fitness

Average
Time

Average
Generation

10
A with OF1 : B

with OF1
0.197 : 0.197 216 : 1582 5 : 518

10
A with OF2 : B

with OF2
0.672 : 0.631 1298 : 4543 33 : 1027

10
A with OF3 : B

with OF3
2.446 : 1.998 332 : 4769 7 : 1077

25
A with OF1 : B

with OF1
0.217 : 0.066 3046 : 8891 42 : 8453

25
A with OF2 : B

with OF2
0.638 : 0.538 15330 : 16369 188 : 8058

25
A with OF3 : B

with OF3
1.658 : 0.601 12202 : 16677 146 : 8149

30
A with OF1 : B

with OF1
0.191 : 0.053 6551 : 11361 78 : 16608

30
A with OF2 : B

with OF2
0.628 : 0.529 20906 : 22746 219 : 16223

30
A with OF3 : B

with OF3
1.515 : 0.541 18981 : 23198 199 : 16414

The above simulations show that GA with the relation matrix coding scheme and

Objective Function OF3 is excellent than other GAs at the average fitness, time and
generation. In table 1, "A" GA with OF3 can gain higher fitness value than other GAs.
"A" GA with OF3 can have faster convergence speed than "A" GA with OF2. The
reason is that OF3 express exacter comparison standard than OF1 and OF2.

4.2 Experiments on Mutation Policy

The mutation policy is the only different points between the compared GAs. Clearly,
the compared GAs should adopt the relation matrix coding scheme. Some same
parameters are population size 400, crossover probability 0.7, mutation probability
0.1, iterations 500, running times 50. The unit of time is ms.

The table 2 is the results of experiments among MP1, MP2, MP3 and MP4.

Table 2. Fitness (MP1:MP2:MP3:MP4)

Tasks Num Average Maximum Fitness

10 0.196:0.191:0.191:0.196

25 0.193:0.165:0.141:0.089
30 0.152:0.132:0.108:0.069

294 S. Su, C. Zhang, and J. Chen

In table 2, the largest fitness value is from MP1. These mean that the MP1 is the
most effective mutation policy among MP1, MP2, MP3 and MP4. MP2 and MP3
increase the probability to create the different paths from the mutated path. This is the
reason that MP2 and MP3 are better than MP4. If mutation, the probability to hold the
mutated path in MP2 is 0.5, but the probability to hold the mutated path in MP3 is the
value of 1 divided by the number of all paths. So, MP3 has higher probability to lose
the good genetic information from the predecessor populations than MP2. This is why
MP2 has better fitness than MP3. The MP1 increases the probability to search more
composition paths and only the chromosome with the biggest fitness values will
survive among mother and child chromosomes. Thus, the evolution direction is
enhanced. These are why MP1 is best one among these mutation policies.

5 Conclusions

The web services selection with global QoS restrictions is an active research area. In
this paper, we discuss fitness function and mutation policy of GA on the basis of the
relation matrix coding scheme of genome. After discussion, the improved fitness
function and mutation policy are proposed. They direct the evolution of GA. They
also improve the convergence speed of GA. While GA includes the relation matrix
coding scheme and Objective Function OF3, it can gain 30 times fitness value than
the GA with one dimension coding scheme and Objective Function OF1. The results
of experiments show that genetic algorithm with improved fitness function and
mutation policy can get more excellent composite service plan.

To provide adaptive capability of genetic algorithms is an active research area [14].
Therefore, how to design a self-adaptive genetic algorithm for QoS-aware selection is
one of our future works.

References

1. W3C.Web Services Architecture (2004) http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/

2. Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75 (2002)
3. Menascé, D.A.: Composing Web Services: A QoS View. IEEE Internet Computing 8(6),

88–90 (2004)
4. Tian, M., Gramm, A., Ritter, H., Schiller, J.: Efficient Selection and Monitoring of QoS-

Aware Web Services with the WS-QoS Framework. IEEE/WIC/ACM International
Conference on Web Intelligence (WI’04) (2004)

5. Soydan Bilgin, A., Singh, M.P.: A DAML-Based Repository for QoS-Aware Semantic
Web Service Selection. In: Proceedings of the IEEE International Conference on Web
Services (ICWS’04) (2004)

6. Zhou, C., Chia, L.-T., Lee, B.-S.: DAML-QoS Ontology for Web Services. In: IEEE
International Conference on Web Services (ICWS’04) (2004)

7. Liu, Y., Ngu, A.H., Zeng, L.: QoS Computation and Policing in Dynamic Web Service
Selection. In: Proceedings of the 13th International Conference on World Wide Web
(WWW), pp. 66–73. ACM Press, New York (2004)

 An Improved Genetic Algorithm for Web Services Selection 295

8. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web
Services Composition. In: Proc. 12th Int’l Conf. World Wide Web (WWW) (2003)

9. Zeng, L., Benatallah, B., Ngu, A.H.H., et al.: QoS-Aware Middleware for Web Services
Composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)

10. Zhang, L., Li, B., Chao, T., et al.: On Demand Web Services-Based Business Process
Composition. IEEE, pp. 4057–4064 (2003)

11. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A Lightweight Approach for QoS–
Aware Service Composition. ICSOC (2004)

12. Ignacio, R., Jesús, G., Héctor, P., et al.: Statistical Analysis of the Main Parameters
Involved in the Design of a Genetic Algorithm. IEEE Transactions on Systems, Man, and
Cybernetics—Part. C: Applications and Reviews 32(1), 31–37 (2002)

13. Srinivas, M., Patnaik, L.M.: Genetic Algorithm: a Survey. IEEE, pp. 17-26 (1994)
14. Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Computation: a

Survey. IEEE EC, pp. 65–69 (1997)
15. Curbera, F., Khalaf, R., Mukhi, N., et al.: The Next Step in Web Services. Communication

of the ACM 46(10), 29–34 (2003)
16. Milanovic, N., Malek, M.: Current Solutions for Web Service Composition. IEEE Internet

Computing, pp. 51–59 (2004)
17. Orriens, B., Yang, J., Papazoglou, M P: Model Driven Service Composition. In the First

International Conference on Service Oriented Computing (ICSOC’03) (2003)
18. ISO 8402, Quality Vocabulary
19. ITU-T Recommendation E.800, Terms and Definitions Related to Quality of Service and

Network Performance Including Dependability (1994)
20. Zhang, C., Su, S., Chen, J.: Efficient Population Diversity Handling Genetic Algorithm

For Qos-Aware Web Services Selection. In: Alexandrov, V.N., van Albada, G.D., Sloot,
P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 104–111. Springer,
Heidelberg (2006)

21. Zhang, C., Su, S., Chen, J.: A Novel Genetic Algorithm For Qos-Aware Web Services
Selection. In: IEEE CEC’06 and EEE’06, USA. LNCS, vol. 4055, Springer-Verlag, Berlin
(2006)

22. Canfora, G., Di Penta, M., Esposito, R., et al.: An Approach For QoS-Aware Service
Composition Based On Genetic Algorithms, Genetic and Evolutionary Computation
Conference (GECCO), Washington DC, USA, vol.1, pp. 1069–1075 (2005)

23. Grønmo, R., Jaeger, M.C.: Model-Driven Methodology for Building QoS-Optimised Web
Service Compositions. The 5th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS), Athens, Greece (June 2005)

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 296–308, 2007.
© IFIP International Federation for Information Processing 2007

A UML Profile for Modeling Mobile Information
Systems

Vegard Dehlen and Jan Øyvind Aagedal

SINTEF ICT, Cooperative and Trusted Systems, Forskningsveien 1, 0314 Oslo, Norway
{vegard.dehlen, jan.aagedal}@sintef.no

Abstract. In this paper we propose a framework for modeling mobile informa-
tion systems. Mobility introduces several challenges and issues that impact the
development of mobile systems. As a result, we want applications running on
mobile devices to exhibit certain traits; they should be aware of the mobility
and be adaptive to the changes that occur due to it. Literature has identified sev-
eral types of mobility – among them, physical and logical mobility. The former
pertains to tangible mobile entities like cars, devices and people, while the latter
encompasses mobile software entities. In addition to these, this paper includes
the concept of vertical mobility – the movement of a network connection be-
tween overlapping networks – in a UML profile for modeling mobile informa-
tion systems. We discuss our experiences from a case study described in [1] ,
where we modeled a simple mobile information system and transformed parts
of the model into code.

Keywords: Mobility, UML profile, model-driven development.

1 Introduction

The introduction of small hand held devices with Internet connection is rapidly
changing the way we both work and live, and an increasing number of people are ac-
quiring these devices. In today’s society we can identify several mobile devices. Lap-
top computers, cell phones, PDAs and tablet PCs are all examples of devices that can
be used while moving around. Common usage is accessing e-mail, remote databases
or the Web, sending faxes and making phone calls, scheduling and document process-
ing [2], in addition to newer usage areas like watching TV or movies, performing
video phone calls or downloading music.

The emergence of novel and useful services and applications in a domain is highly
dependent on software engineering. The existence of a solid development framework
and methodology allows applications to be developed more rapidly and with higher
quality, in addition to promote consistency, interoperability and reuse within the
community. Such a framework should capture the characteristics and concepts of the
target domain. The work in this paper builds upon and expands the previous efforts
towards reaching this goal, i.e., representing the mobility domain at the metalevel.

This paper is organized as follows. Chapter 2 gives an analysis of the problem, by
analyzing the concept of mobility and what we mean by it and by introducing differ-
ent types of mobility. In Chapter 3 we list some requirements for a framework for

 A UML Profile for Modeling Mobile Information Systems 297

modeling mobile information systems. Chapter 4 presents our solution to the problem;
a mobility metamodel and an accompanying UML profile. Chapter 5 discusses the va-
lidity of our solution, before Chapter 6 draws some conclusions and suggests future
work.

2 Problem Analysis

2.1 Theory of Mobility

Since its inception, mobile computing has resulted in the introduction of several
sub-fields, and today we talk about systems that are context-aware, location-aware,
mobility-aware and/or adaptive. In the following, we will further explain our views of
mobility and the kind of applications we are interested in modeling.

An adaptive system simply refers to a system with the ability to adapt to different
situations and contexts. Adaptation is not a phenomenon exclusive to mobile comput-
ing, but it is, as pointed out earlier, identified as the main strategy for coping with the
high variability and heterogeneity of the mobile domain [3, 4]. There are several fac-
tors an application can adapt to:

1. To its current context or changes in context.
2. To its available system and network resources and changes in these.
3. To changes in location, i.e., mobility.

There are different ways to view mobility. First, we can see it as an entity’s ability
or willingness to move. Second, we can see it as an entity that is currently moving.
Movement patterns can be described by different modalities, as defined in [7]. Third,
we can view mobility as a change of an entity’s location, where the movement be-
tween locations is considered an atomic action.

In the area of context awareness, change of location is interesting due to the
changes in context that naturally occur. Location change might entail changes in sev-
eral environment properties like temperature, nearby people and devices, available
printers and ongoing activity - properties a context aware application can take advan-
tage of. In the field of mobility, location change also means roaming between differ-
ent network cells, requiring seamless handoff and service [8] and session [9] mobility.
Some of these issues are handled in the network and middleware layers, but the appli-
cation can also take advantage of these activities, like employing a new mobile code
strategy based on the change in network characteristics. However, in an adaptivity
context, these issues alone are not enough to warrant the concept of location as a first
class entity, as an application does not need to know of any other than its current loca-
tion to perceive changes in context and network resources. A system that only consid-
ers location change can offer reactive adaptation, which means that it can react to the
changes that occur because of mobility.

Modeling locations as first class entities is only necessary in an application that
needs to know the properties of locations other than its current one, which is enabled
by an entity’s ability to move. A system can then provide proactive adaptation.

There are different ways of representing a location. The abstraction we choose de-
pends on the unit of mobility, where location could be represented by Cartesian

298 V. Dehlen and J.Ø. Aagedal

coordinates for a mobile device or by a host address for a mobile agent [6]. Option-
ally, we can choose abstractions that are conceptually related to the world we live
in, where a mobile device could be located in the tax free shop at Gardermoen airport
in Norway. In the latter scenario, we see that locations are defined within locations. In
addition, locations can be mobile. A passenger on a ferry will have a location relative
to the boat (being in his cabin, for example), while the boat has a location relative to
its previous and destination port. In addition to being nested, locations can be over-
lapping. An example of this is a road that runs through several areas of a city. One
could thus say that, conceptually, an entity has two different locations. However, in
practice, we consider the entity to be located in the intersection of the overlapping
locations.

Another reason for treating locations as a first class concept is, as identified in [11],
that locations may have access restrictions or barriers. A person traveling from one
country to another will have to pass security mechanisms at the border, while a mo-
bile agent might have to pass a firewall to access a remote device or administrative
domain. These concerns are out of this paper’s scope, but the concepts of mobility
and locations presented provide a foundation on which security and access control can
be modeled and reflected upon.

2.2 Types of Mobility

Physical and Logical Mobility. Literature has long since identified two main types
of mobility. Logical mobility (also called mobile computation) deals with the
movement of software entities, while physical mobility (mobile computing) deals
with the movement of physical entities.

There is a distinct difference between physical and logical mobility. The former is
something that occurs in the real world, as people or devices move and change loca-
tions. Each location might offer different resources and context, like nearby printers
or available networks. An application running on a mobile device might thus continu-
ally experience change in available resources and context. A mobile information sys-
tem cannot control or influence physical mobility, but it can observe location changes
and react with different adaptation strategies if necessary. For logical mobility, on the
other hand, the situation is the total opposite, as logical mobility is a phenomenon that
encompasses software entities that are designed by an application developer. Conse-
quently, while an application reacts to physical mobility, it can employ logical mobil-
ity and mobile code as an adaptation strategy – possibly as a reaction to physical
mobility.

It is worth noting, however, that logical mobility can exist without physical mobil-
ity and vice versa.

These fields are mostly disconnected; logical mobility within the software commu-
nity and physical mobility within the hardware community. However, [11] argues that
the two types of mobility are intertwined, and should be treated in a uniform way.

Vertical Mobility. As time progresses, more and better access points become avail-
able in our environment. Especially in high density areas, a device can have several
heterogeneous access networks to choose from. These networks might offer different
services, coverage, cost and bandwidth, and the mobile device can choose which

 A UML Profile for Modeling Mobile Information Systems 299

network to use. Change of access network is thus not only caused by physical mobil-
ity, but might also happen while the device remains stationary. This is called vertical
handoff. The term vertical refers to overlapping wireless networks and their hierarchi-
cal and asymmetric relationship [12]. A device can thus have access to networks that
offer low-bandwidth over a wide geographic area to networks that offer high-
bandwidth over a narrow geographic area [13]. The opposite is called horizontal
handoff, where the handoff occurs between access points in a homogeneous network
infrastructure [14]. An example of horizontal handoff is when a mobile phone
switches between different access points.

One of the main problems of mobile systems is that a mobile device will have to
change access network, which can be divided into three different scenarios:

1. The device leaves the coverage area of its current network, and loses connection.
2. The device leaves the coverage area of its current network, and connects to another

available network.
3. The device is stationary, and chooses to connect to another available network.

The first two scenarios are direct results of physical mobility, where mobile nodes
move out of their present network coverage. The third scenario, however, is not true
mobility, but has the same effect; the system must manage the change in IP routing
caused by the vertical handoff [15]. This is what we term vertical mobility (or policy
mobility, as defined in [15]), where a node can be in an environment of several over-
lapping networks with different properties and choose freely which network to use. In
our definition of vertical mobility we do not require the networks to be heterogene-
ous, as we would also be interested in the possibility to change between, say, two
overlapping WLANs with different properties.

For vertical mobility we define the unit of mobility to be a network connection,
which we define as a logical mobile entity that can move between networks. This fits
our focus on mobility as an atomic change of location, as identified in the previous
section. Subsequently, we view vertical mobility as a type of logical mobility. They
both share the characteristic that they can be controlled by the application designer.

3 Requirements for the Modeling Framework

We are interested in providing a framework for modeling mobile information
systems. Specifically, we are interested in modeling concepts that are useful when de-
signing applications and that allow us to leverage all the new possibilities that mobil-
ity brings. This is also known as adaptive, mobility-aware applications.

In our approach, we are interested in an entity’s change of location and its ability
or willingness to move. Consequently, we can reason about both reactive and proac-
tive adaptation. We do not consider the continuous movement of entities, but only the
result of it, i.e., location change. Furthermore, we view location as a defined entity
with boundaries that can contain other entities. Following this definition, we do not
consider location by satellite positioning, as in location aware systems, to be a loca-
tion entity, but rather one of several properties that might describe a location.

The framework should separate between the different types of mobility that have
previously been identified; physical and logical mobility. In addition, we believe that

300 V. Dehlen and J.Ø. Aagedal

a framework for modeling mobile information systems should also include the
concept of vertical mobility, as change of network is very relevant to mobility and
adaptive applications. Our goal is to propose a user-friendly and visual modeling
framework that allows developers to reason and communicate about these types of
mobility in mobile systems.

We do not have the opportunity to go into a detailed discussion of requirements
here, but for a fine-grained list of requirements and the reasoning behind them, see [1].

4 Proposed Solution

4.1 Mobility Metamodel

Grassi et al. [3] define the following issues that need clarification when we want to
model mobility:

• Which entities move?
• How do we model the movement of an entity?
• What causes the movement of an entity?

As we defined in the requirements, we view mobility as an entity’s willingness and
ability to move and the actual location change of these entities. First, we introduce lo-
cation as a concept. By location we mean any entity that has some concept of a
boundary and that can contain other entities. A location can be divided into physical
and logical locations. Examples of locations we are interested in separating between
are places, networks, devices and execution environments (such as a virtual ma-
chine like JVM), as illustrated in Figure 1.

Second, we need to identify the entities with the ability to change location. Mobile
entities are also divided into physical and logical elements, and indicative examples of
interest are devices, people, locations (e.g. vehicles), network connections and
software. See Figure 2. Our metamodel does not include concepts for detailed model-
ing of the network topology (like routers, proxies, multiplexes, etc), as we, from an
adaptive application’s point of view, are only interested the different networks the ap-
plication has access to and their characteristics.

Fig. 1. Location metamodel

 A UML Profile for Modeling Mobile Information Systems 301

Fig. 2. Mobile entity metamodel

Third, Figure 3 illustrates how these concepts relate. A location is an entity that can
contain other entities. These entities can be stationary or mobile in nature. There is a
nesting relationship between locations, where one location can contain several other
locations. This relationship can effectively model locations at different levels, like a
room contained within a building contained in a city. Most entities will have one loca-
tion. However, some entities might not have a location, e.g. a top-level location, while
other entities might have several locations, e.g. a distributed file system. Mobile
entities must have at least one location, and they have the ability to move between lo-
cations that are connected. The semantics of being connected varies for the different
types of mobility, which is explained in the next section.

Fig. 3. Mobility metamodel

Several of the entities in our mobility domain can play different roles depending on
the selected viewpoint. A mobile device is considered an entity that can change loca-
tion from the viewpoint of physical mobility, while it has the role of a location that
mobile code potentially can move to and from in the context of logical mobility.

Figure 4 shows a conceptual model for vertical mobility, which is somewhat dif-
ferent from general mobility. A network can not contain another network like loca-
tions can contain other locations. In addition, vertical mobility does not only involve
the mobile entity (network connection) and its container (network), as the device and
its location has to be considered as well. A physical location is associated with the
available networks at that location, while a device is associated with the network it is
currently using. A device is thus aware of its available networks through its location.

302 V. Dehlen and J.Ø. Aagedal

Fig. 4. Vertical mobility metamodel

4.2 UML Profile for Modeling Mobility

The profile presented in Figure 5 is inspired by the profile introduced by Grassi et al.
in [3], which is a profile for modeling physical and logical mobility. A detailed
discussion of the differences of our approach and that of Grassi et al. is provided in
Section 5.2.

Fig. 5. UML profile stereotypes for mobile systems

The previous section identified the entities we consider for physical, logical and
vertical mobility. For devices, users and other physical mobile entities we use the
stereotype MobileElement [3]. Furthermore, we introduce the stereotypes Mobile-
Software and NetworkConnection. These three stereotypes extend Node, Class and
Association, respectively. Consequently, MobileSoftware can be used on both classes
and components to denote a piece of mobile software.

 A UML Profile for Modeling Mobile Information Systems 303

Table 1. Profile stereotypes

Stereotype Extends Constraints Description

MobileEle-
ment

Node Can be located
in a Place.

Has the ability to be moved be-
tween physical locations.

MobileSoft-
ware

Class Can only be
located in a
Node.

Has the ability to be moved be-
tween nodes.

Network-
Connection

Associa-
tion

Connects a
Device to a
Network.

Has the ability to be moved be-
tween networks. Can be changed
by Connect.

Place Node A physical location that can con-
tain other entities.

Network Node Networks can span several loca-
tions and devices can connect to
them through NetworkConnec-
tion.

Move Activity Locations
must be con-
nected.

Moves a MobileElement between
two physical locations.

Migrate Activity Locations
must be con-
nected.

Moves a MobileSoftware between
two nodes.

Connect Activity Destination
Network must
be at Device’s
NodeLocation.

Moves a NetworkConnection be-
tween two networks.

NodeLoca-
tion

Associa-
tion

Connects a
Node to a
Place.

Specifies the location of a Mobi-
leElement. Can be changed by
Move.

SoftwareDe-
ployment

Deploy-
ment

Deploys a
Component to
a Node.

Specifies the current deployment
of a MobileSoftware. Can be
changed by Migrate.

Mobility-
Manager

State-
Machine

 Models the causes and triggers of
the movement of mobile entities.

Mobile entities move between locations. The UML2 specification has already de-
fined constructs for the Device and ExecutionEnvironment concepts, which are loca-
tions for MobileSoftware. We introduce the stereotypes Place and Network to denote
physical locations and overlapping access networks.

304 V. Dehlen and J.Ø. Aagedal

Each entity can have a location. NodeLocation is a stereotyped Association that
specifies the location of a node. The location of mobile software is modeled through
the SoftwareDeployment stereotype.

The movement of mobile entities is modeled by extensions to the Activity meta-
class. These are Move, Migrate and Connect for physical, logical and vertical mobil-
ity, respectively. A mobile entity can only move if there exists a channel connecting
the two locations. This could imply a corridor connecting two rooms for physical mo-
bility, or two nodes being connected to the same network or the Internet for logical
mobility. For vertical mobility, both networks have to be available from the device’s
current location.

As presented in [3], we use the concept of a mobility manager. The MobilityMan-
ager stereotype is a state machine for modeling the cause of mobility. The intention is
that a system can change its mobility policies by selecting between different mobility
managers. It is worth noting that a mobility manager only covers adaptation through
mobility. Our profile does not try to cover adaptation in general.

5 Validation

In [1] we validated our profile through a case study. In the following, we present our
experiences and lessons learned from the case study, in addition to positioning our
profile among related work on the topic.

5.1 Case Study

In [1] we conducted a case study where we used the profile to develop a mobile
information system. A PIM was designed before being marked with stereotypes from
the UML profile. A part of this design was then transformed from PIM to PSM (plat-
form specific model) and all the way to code. For the PIM to PSM transformation we
used the ATLAS Transformation Language (ATL) [16], while we used MOFScript
[17] for the PSM to code transformation.

In the case study we designed two deployment diagrams – one with and one with-
out the use of stereotypes from our profile. While the first diagram only models one
static scenario, the second diagram represents a snapshot of a possible scenario, while
also showing other scenarios that are possible due to physical, logical and vertical
mobility.

This type of model can serve two purposes; as a design time and a runtime model.
In our case it was used as the former. Applying the profile resulted in a model that
describes an important part of the application domain for an adaptive system. The
mobility and location of a mobile entity will heavily influence the resources and con-
text available to the system, giving the designers a fuller understanding of the envi-
ronments the system will run in and needs to adapt to.

An adaptive system can also maintain a runtime version of the model, always keep-
ing track of its current location and context. By analyzing previous mobility patterns
or a schedule, the application could also offer adaptation based on future location and
context. This area of use has been explored in the FAMOUS project, without seeing
realization in the middleware.

 A UML Profile for Modeling Mobile Information Systems 305

We also designed a class diagram of the client application and marked a class as
being mobile. Based on the transformation mappings we defined, we transformed the
class diagram into a simple mobile code solution for Java Micro Edition (J2ME). The
transformations did not result in a running application, but showed how marking a
piece of software as mobile at the PIM level can automatically produce application
solutions through transformations.

With the use of transformations, development time was naturally significantly
shorter than it would have been to manually create all the models and code. In addi-
tion, the developer does not need to have any knowledge about the platform. How-
ever, developing transformations requires both time and expert knowledge of domains
and platforms. As the number of platforms is significant for mobile devices and new
devices are introduced at a rapid pace, one must consider the time and resources spent
on implementing a MDD approach versus time saved using it.

The last part of the design phase was designing mobility managers for the different
types of mobility, which specified the different causes and triggers for the mobility
and transitions between the different scenarios modeled in the mobility deployment
diagram. The drawback of using state diagrams is that they model state changes based
on simple event-condition statements. Sometimes, decision making about which adap-
tation strategy to use is a complex calculation. In the MADAM middleware, for
example, utility functions might draw information from numerous context sources to
determine the best adaptation strategy for a given context [18].

5.2 Related Work

The literature contains several approaches to modeling mobility. In the following, we
give a brief overview of some of these and show what our approach contributes with.

In [19] UML sequence diagrams are extended to model complex mobility patterns,
but this requires a nonstandard extension of UML sequence diagrams. The diagrams
provide the possibility to abstract away from irrelevant details. Their semantics is
similar to that of ambients in that a mobile object is a location and a mobile process as
well [20].

In [20], UML class and activity diagrams are extended, allowing the representation
of mobile objects and locations as well as basic primitives such as moving or cloning.

Most relevant for the approach presented in this paper, though, is Grassi et al.’s
UML profile for modeling mobile systems [3]. It makes a clear distinction between
logical and physical mobility, and these concepts have their own representations.

The most significant difference between the approaches in [3] and this paper is
the introduction of metalevel concepts for vertical mobility. The network a device is
connected to has significant effects on the context a system experiences and the adap-
tation strategy it employs. By allowing developers to reason about different, overlap-
ping networks in their models, we believe they will have a better vocabulary for
reasoning about mobility and adaptivity in mobile systems.

When it comes to modeling physical and logical mobility, the approaches are simi-
lar except for a few differences.

Grassi et al. use the stereotypes MobileElement and its inherited stereotype Mo-
bileCode to model physical and logical mobile elements, respectively. They neglect to
extend any metamodel classes for these concepts. We remedy this situation in our

306 V. Dehlen and J.Ø. Aagedal

profile. In addition, we deemed the inheritance relationship as unnecessary and re-
moved it, and renamed MobileCode to MobileSoftware as we think the latter puts less
restrictions on the use of the concept.

Place, NodeLocation and MobilityManager are the same in both profiles. Current-
Deployment has been renamed SoftwareDeployment to better reflect the naming con-
vention used for NodeLocation. In [3] the concept MoveActivity is used for moving
MobileElements, while this is further specialized into PhysicalMove and Logical-
Move in [21]. We used the terms Move and Migrate for the same meaning.

In [3], the authors introduced the stereotyped deployment AllowedDeployment,
which is used to model additional constraints, like security and administrative do-
mains, to the mobility of mobile code. We do not, however, see any reason for treat-
ing logical mobility any differently from physical mobility in this respect. As security
is outside our scope, we chose not to include AllowedDeployment or any similar con-
structs.

Grassi et al. also specifies a set of Activity stereotypes that supports more fine-
grained concepts and operations related to mobility and management of a mobility
model; BeforeMoveActivity, AfterMoveActivity, AbortMoveActivity, AllowDe-
ploymentActivity and DenyDeploymentActivity. We have not treated these in this
paper.

The following table lists the stereotypes presented in this paper and the correspond-
ing stereotypes in Grassi et al.’s profile.

Table 2. Comparison to earlier work

UML profile for
mobile systems

Corresponding concepts in
Grassi et al.’s profile

MobileElement MobileElement

MobileSoftware MobileCode

NetworkConnection None

Place Place

Network None

Move MoveActivity/PhysicalMove

Migrate MoveActivity/LogicalMove

Connect None

NodeLocation NodeLocation

SoftwareDeployment CurrentDeployment

MobilityManager MobilityManager

 A UML Profile for Modeling Mobile Information Systems 307

6 Conclusions and Future Work

Mobile computing is characterized by a high level of heterogeneity and significant
variations in available resources. As a result of this, it is generally accepted that mo-
bile systems should be able to adapt to changes in context and resources.

Based upon earlier work, we presented a UML profile for modeling mobile infor-
mation systems. The focus has been on modeling mobility as a change of location,
and how a mobile system can adapt to its changing environment. The profile differen-
tiates between and provides concepts for physical, logical and, as included in this pa-
per, vertical mobility. Our approach is based on deployment diagrams, where we
model the relationships between locations and mobile entities. Mobility managers, as
defined in [3], are state machines that drive the mobility of a system. Based on events
like location change, change in battery levels or network quality, the mobility manag-
ers can decide to employ a mobile code strategy or connect to another network.

In [1] we used our framework to develop a case study application. This provided us
with valuable information about the usefulness of the framework and was a basis for
its validation. In this paper we discussed the experiences we gained from the case
study, before giving an overview over related work on the topic. The major contribu-
tion from our profile is the introduction of vertical mobility. To further validate the
proposed framework we should perform additional case studies to assess its useful-
ness in different kinds of and more complex systems.

References

1. Dehlen, V.: Developing Mobile Information Systems. University of Oslo: Oslo, pp. 145
(2006)

2. Chalmers, D., Sloman, M.: A Survey of Quality of Service in Mobile Computing Envi-
ronments. IEEE Communications Surveys (1999)

3. Grassi, V., Mirandola, R., Sabetta, A.: A UML Profile to Model Mobile Systems, in 2004 -
The Unified Modelling Language. SpringeLink, pp. 128–142 (2004)

4. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal Com-
munications (2001)

5. Patterson, C.A., Muntz, R.R., Pancake, C.M: Challenges in Location-Aware Computing.
IEEE Pervasive Computing 2(2), pp. 80–89 (2003)

6. Roman, G.-C., Picco, G.P., Murphy, A.L.: Software engineering for mobility: a roadmap,
in The Future of Software Engineering. Limerick, Ireland (2000)

7. Kristoffersen, S., Ljungberg, F.: Mobile Informatics Innovation of IT Use in Mobile Set-
tings: IRIS’21 Workshop Report. SIGCHI Bulletin, vol. 31(1) (1999)

8. Küpper, A., Spaniol, O.: Evaluation of strategies for supporting personal mobility and ser-
vice portability, in 2000 IEEE Service Portability and Virtual Customer Environments
(2000)

9. Sun, J.-Z., Sauvola, J.: On fundamental concepts of mobility for mobile communications.
In: 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communi-
cations. Lisbon, Portugal (2002)

10. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: First International Conference on Foun-
dations of Software Science and Computation Structure (1998)

308 V. Dehlen and J.Ø. Aagedal

11. Cardelli, L.: Abstractions for Mobile Computation. , Microsoft Research, Microsoft Cor-
poration (1998)

12. Ylianttila, M.: Vertical handoff and mobility - system architecture and transition analysis,
University of Oulu: Finland, pp. 70 (2005)

13. Stemm, M., Katz, R.H.: Vertical handoffs in wireless overlay networks. Mobile Networks
and Applications, vol. 3(4) (1998)

14. Bellavista, P., Cinque, M., Cotroneo, D., Foschini, L.: Integrated support for handoff man-
agement and context awareness in heterogeneous wireless networks. In: 3rd International
Workshop on Middleware for Pervasive and Ad-hoc Computing MPAC ’05. ACM Press,
New York (2005)

15. Tourrilhes, J.: L7-mobility: a framework for handling mobility at the application level. In:
15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communica-
tions (2004)

16. ATLAS Transformation Language (ATL) homepage. http://www.eclipse.org/gmt/atl/
17. MOFScript homepage. http://www.eclipse.org/gmt/mofscript/
18. Paspallis, N., Papadopoulos, G.A.: Distributed Adaptation Reasoning for a Mobility and

Adaptation Enabling Middleware. In: 30th Annual International Computer Software and
Applications Conference (COMPSAC 2006), IEEE Computer Society Press, Los Alamitos
(2006)

19. Kosiuczenko, P.: Sequence diagrams for mobility. in ER/IFIP 8.1 Workshop on Concep-
tual Modelling Approaches to Mobile Information Systems Development (MobIMod),
Tampere, Finland. Springer, Heidelberg (2002)

20. Baumeister, H., Koch, N., Kosiuczenko, P., Wirsing, M.: Extending Activity Diagrams to
Model Mobile Systems. In: Revised Papers from the International Conference NetObject-
Days on Objects, Components, Architectures, Services, and Applications for a Networked
World, Springer, Heidelberg (2002)

21. Grassi, V., Mirandola, R., Sabetta, A.: UML based Modeling and Performance Analysis of
Mobile Systems. In: 7th ACM International Symposium on Modeling, Analysis and Simu-
lation of Wireless and Mobile Systems, ACM Press, New York (2004)

A Planning Method for Component Placement in Smart
Item Environments Using Heuristic Search

Jürgen Anke1,2, Bernhard Wolf1, Gregor Hackenbroich1, and Klaus Kabitzsch2

1 SAP Research CEC Dresden, Germany
2 Dresden University of Technology, Institute of Applied Computer Science, Germany

{juergen.anke, gregor.hackenbroich, b.wolf}@sap.com,
kk10@inf.tu-dresden.de

Abstract. Smart item environments consist of networked nodes with heteroge-
neous hardware equipment and intermittent network connections. Using a com-
mon component technology allows for flexible distribution of components for
processing of smart item data. Finding a good deployment plan for a new set
of components in an infrastructure is called Component Placement Problem. We
propose an approach for finding suitable deployment plans for components with
special regard to the characteristics of smart item environments. Our method eval-
uates deployment plans in terms of both resource consumption and availability.
From the analysis of the solution space we conclude that the number of network
link uses is an important criterion for the quality of a deployment plan regarding
both cost and availability. Based on this finding, we have derived a heuristic that
creates deployment plans, which have a low number of link uses and are thus
more likely of high quality.1

1 Introduction

Smart items are physical products that include product embedded information devices
(PEIDs), e.g. embedded systems, or RFID tags. For application domains such as Prod-
uct Lifecycle Management (PLM), enterprise applications benefit from accessing data
on smart items. Error-prone manual data input can be replaced with automatic data
acquisition to support business decisions, e.g. for maintenance planning, effective recy-
cling, and product design improvements. As it is not reasonable to integrate mechanisms
for accessing PEIDs into business applications, this functionality is provided by a mid-
dleware. The middleware and the PEIDs form the smart item environment, which can
be distributed in a network over various nodes. A key characteristic of smart item en-
vironments is a high degree of heterogeneity in terms of hardware resources. Typically,
there is a powerful middleware server which is contacted by client applications to re-
quest smart item data. The requests are then forwarded to other nodes in the field, which
translate the requests into a PEID specific protocol. Finally, the PEIDs are embedded
systems, which contain the data sources and have very limited resources. In general,
available resources are decreasing towards the edge of the network.

1 Parts of this work are based on the PROMISE project (www.promise.no), which is funded by
the European Union IST 6th Framework program, project no 507100.

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 309–322, 2007.
c© IFIP International Federation for Information Processing 2007

310 J. Anke et al.

All nodes in the smart item environment can contain a standardised execution en-
vironment, such as OSGi [1] or Jini [2]. This turns the smart item environment into a
distributed execution environment, allowing for flexible placement of components that
format, analyse, filter, or pre-process the data flows between backend applications and
smart items [3]. If a new set of components (a component composition) has to be de-
ployed onto the smart item environment, each component has to be assigned to a host.
The assignment of a component to a host is called component placement, and hence
finding a set of good assignments is the component placement problem (CPP) [4]. A
deployment plan is a set of component placements for a given component composition.
Previously, we have proposed a method to identify good deployment plans in smart
item environments based on the cost of demanded resources [5]. The cost of demanded
resources is an important evaluation criterion as resources on the various hosts and net-
work links are differently valued in heterogeneous environments.

However, considering the cost of resource demands alone is not sufficient to identify
suitable deployment plans. Most products are mobile and therefore communicate with
middleware over wireless connections, which influences the availability of PEID data.
Availability is defined as the degree to which a system or component is operational and
accessible when it is required for use [6]. In a distributed component-based system,
the availability depends on the placement of components [7,8,9] and hence availability
is also a relevant evaluation criterion for deployment plans. Intuitively, the availability
increases when the amount of data to be transferred over unreliable connections de-
creases. This can be achieved by placing components on the PEIDs to perform data
analysis locally and transmit only the analysis results. However, this competes with the
goal of minimising cost of resource demands as resources on the PEIDs are much more
expensive than on other nodes. This trade-off has not been investigated in the context of
component deployment planning. Instead, existing approaches use a single evaluation
criterion to determine the quality of deployment plans (see section 3).

In this paper, we propose a component deployment planning method, which is ap-
plicable for smart item environments. More specifically, we propose an extended system
model, evaluation functions for both cost and availability, and methods to determine
model parameters. Using a practical application, we found that the number of network
link uses is an important driver for the quality of a deployment plan. Based on that find-
ing, we propose a heuristic for creating deployment plans with few network link uses.
We show that applying this heuristic leads to good results in very short time.

The remainder of the paper is structured as follows: First, the characteristics of smart
item environments are discussed and a set of requirements for deployment planning are
derived. Afterwards, we review related work and point out their shortcomings with
regard to our problem. In section 4 our solution is presented in an overview. Section
5 contains the core model for the CPP including evaluation functions and constraints.
The extension of this model for smart item infrastructures is shown in section 6, where
we propose methods to determine availability and resource demands. Finally, in section
7 it is investigated whether the two dimensions cost and availability are competitive,
i.e. form a trade-off. Furthermore, we show that the number of network link uses is a
major driver for the quality of deployment plans and present an algorithm, which creates
deployment plans based on this heuristic.

A Planning Method for Component Placement 311

2 Problem Analysis

Smart item environments have some characteristics which place special requirements
on deployment planning methods. Here, these characteristics are briefly discussed to de-
rive requirements from them. The requirements provide a rationale for the deployment
planning method we propose and serve as basis for identifying weaknesses in related
works. The main characteristics of smart item environments are:

– Heterogeneity of infrastructure: Infrastructure nodes in the smart item environ-
ment can range from resource-constraint embedded system, to conventional per-
sonal computers and middleware servers with vast resources. Network links
connecting these nodes do also have different capacities.

– Intermittent connections: PEIDs are typically connected to the middleware using
wireless connections that are not permanently available. This is either due to re-
strictions in the technology, e.g. mobile phone networks do not have full coverage,
or a result of application specifics. For instance, if a PEID in a truck connects to a
middleware access point in a depot using wireless LAN, it is unavailable during the
time when the truck is not in connection range.

– Distributed data sources: Smart item environments are mainly employed to col-
lect and analyse product data, e.g. static product information, the product structure,
the operational status of the product, as well as historical records of owners, users,
maintenance operations, etc. This data can be provided from local memory of the
PEID or read from sensors that are integrated in the product. Other examples for
data sources are rule repositories used for data analysis and thresholds, which might
be stored on a middleware server. These data sources have a certain location in the
infrastructure and send a response of a certain size when they are queried.

A deployment planning method for smart item environments has to take all these
characteristics into consideration by fulfilling the following requirements:

1. Consider cost of demanded resources: The method shall consider the cost of
resource demands at different hosts in the infrastructure. Although there are various
resources, the method should at least take CPU, memory, and bitrate into account.
These are the resources that are particularly scarce at the edge of the network, e.g.
an embedded system has only a small memory, a very limited CPU power, and
might only have low-bitrate connectivity, such as GPRS2 or IEEE 802.15.43.

2. Evaluate the effect of intermittent connections: Intermittent connections influ-
ence the availability of data in the smart item environment. Component deployment
plans can lead to better or worse availability. Therefore the method shall evaluate
the effects of intermittent connections on the availability.

3. Explicit modelling of distributed data sources: Resource consumption depends
on the data amounts that have to be transferred between the components and thus
between their hosts in the infrastructure. As the traffic originates from the distrib-
uted data sources, the method shall provide means to explicitly model the location
and message sizes of data sources.

2 General Packet Radio Service, a packet-oriented communication protocol on GSM mobile
phone networks.

3 An IEEE standard for low-rate Wireless Personal Area Network (WPAN) connectivity.

312 J. Anke et al.

3 Related Work

There is currently no component deployment planning method, which specifically ad-
dresses the domain of smart item environments. Hence, we review existing methods
from related areas, e.g. mobile applications, grids, and computing clusters.

Mikic-Rakic et al present (re-)deployment planning for components in the context
of PRISM [10], a middleware for distributed and mobile applications. In this environ-
ment, hosts are resource-constrained devices connected with intermittent wireless links.
Component redeployment aims to improve the availability of a system. Special focus is
put on the evaluation of planning algorithms, e.g. an approximative algorithm based on
ordered lists of hosts and components [8], a decentralised algorithm with an auctioning
mechanism [9], greedy and clustering algorithms [11]. The input model allows specify-
ing memory constraints, and evaluation of bandwidth constraints through frequency of
message exchanges between components and the average message size. The approach
is very comprehensive, however, it does neither support the modelling of data sources
nor evaluation of CPU utilisation. It also does not consider different costs of resources.

Another approach [4] was proposed for resource-aware deployment planning for
component in grid environments based on Artificial Intelligence (AI) methods. For each
component the required CPU and bandwidth must be defined to compute a resource-
optimal deployment plan, which fulfils a deployment goal specified by the user (such as
component c1 should run on host h1). Additional components for encryption, caching,
compression etc. may be added to the deployment plan to adapt the resource demands
to the infrastructure’s capacities. Although the presented approach is sophisticated, it is
not suitable for our purposes, as it does not support heterogeneous infrastructures and
modelling of data sources. Also, the effect of intermittent connections is not considered.

Steward et al propose automatic deployment for components of a J2EE application
running on a cluster of computers [12]. This method aims to find a deployment that
maximises the throughput of the distributed application but does not evaluate resource
consumption. The method is not applicable for smart item environments as it assumes
homogeneity of nodes. Deployment plans are evaluated only in terms of throughput but
not for cost or availability. Finally, modelling of data sources is not possible.

Dynamic networks with intermittent connections play a key role in the deployment
method for hierarchical components in a heterogeneous distributed system [13]. Un-
like other approaches, the deployment plan is not calculated in advance but determined
dynamically during the deployment process in a propagative manner. In the context of
our elaborated requirements the approach is not applicable, as it only seeks a satisfying
solution rather than evaluating different valid deployment plans. Furthermore, it does
not support modelling of data sources and different costs for resources in the network.

An allocation algorithm for the placement of complex CORBA components is pre-
sented by Wu et al [14]. The method supports modelling of resource demands and
constraints as well as global weighting of the resources memory, CPU and bandwidth
according to their importance in the respective situation. Components are placed in or-
der of their allocation priority, which is derived from the weighted ratio of resource
demand and sum of available resource across all containers. However, the method nei-
ther considers intermittent connections, nor supports modelling of data sources. It does
not allow for assigning different costs for these resources on each host. Finally, the

A Planning Method for Component Placement 313

modelling used in this approach is very complex, which is appropriate for CORBA
components but less applicable for the simple data processing components in our case.

In summary, existing component deployment methods do not model distributed data
sources and are all based on a single evaluation criterion. Resource constraints are con-
sidered in some approaches but no cost-based evaluation of resource demands is per-
formed, i.e. the resources are valued the same on all hosts. It can be assumed that the
degree of heterogeneity in scenarios addressed by existing methods was low, which
made cost-based evaluation unnecessary.

4 Proposed Solution

We propose a solution to the component placement problem that addresses the require-
ments stated above. Its overall approach is to create and rank deployment plan can-
didates by evaluating their cost of resource demands and their availability (Figure 1).
Expected resource demands are determined, and added as annotation to the composi-
tion model. On the basis of a given deployment plan, these demands are mapped to the
infrastructure model to relate the demands with the respective cost and capacities. If no
resource constraints are violated, the availability of the system and the cost of utilised
resources is calculated and compared to the best plans found so far. When all deploy-
ment plan candidates have been evaluated or the maximum number of plans to evaluate
have been reached, the best ranking deployment plans are presented to the user.

Determine Resource
Demands for CM

Create new
Deployment Plan

Composition
Model (CM)

Infrastructure
Model (IM)

Load Model
(LM)

Check Constraints

Determine Network
Link Availabilities

Calculate System
Availability and Cost

Add Deployment
Plan to TOP N List

Display TOP
N List

Deployment
Plan

[plan valid]

[plan invalid]

[in best
N plans]

[not in best N plans]

[count<maxCount &&
 plans available]

[else]

Mapping of Resource
Demands CM IM

Fig. 1. Solution overview

Details of our solution are presented in the next two sections as follows:

Core Model. The basis of our solution is the core model of the component placement
problem, which consists of the following elements:

– Composition Model (CM), which specifies the composition of components, their
dependencies, and resource demands. It contains the data sink and data sources.

– Infrastructure Model (IM) describing the structure of the network, the resource
capacities of each host and network link, and cost per unit for these resources.

314 J. Anke et al.

– Mapping function describing the assignment of components to hosts for mapping
resource demands in the CM to resource capacities and costs in the IM.

– Constraints to validate deployment plans.
– Evaluation functions to calculate quality measures (availability and cost of de-

manded resources) of valid deployment plans.

Determining Model Parameters for Smart Item Environments. The model requires a
number of parameters, which have to be supplied when the model is applied for com-
ponent deployment in smart item environments. We go beyond estimating these para-
meters by proposing methods to determine availability as well as the demands for bitrate
and CPU based on a load model. As these methods for determining parameters are de-
coupled from the CPP model, they can easily replaced by other ones when appropriate.
Activities related to determining parameters are highlighted with italics in Figure 1.

5 Core Model of the CPP

Composition Model. The composition model is represented as a connected, directed
composition graph G, consisting of a set of nodes C and set of dependencies (edges)
D ⊆ C ×C. The set C consists of a set of nodes CR that can be relocated and a set CF of
nodes which are fixed to a specific host. The number of relocatable components C and
dependencies D is the cardinality of the respective set: C = |CR| and D = |D|.

– Data Sources and Data Sink It is characteristic for each component that it receives
an input and produces an output of data. Therefore, each component depends on
one or more other components. Besides components there are two other node types
in the composition graph: First, there can be one or more data sources that only
provide output of data. Second, there must be exactly one data sink, which only re-
ceives data input. Data sink and data sources represent endpoints in the composition
graph and belong to the set CF as they are fixed to a specific host.

– Resource Demands For all components c ∈ C a resource demand Rz(c), where z =
{mem, cpu} depends on memory and CPU power. Similarly, for all dependencies
d ∈ D in the composition graph we assign the required bitrate Rbr(d) for the
communication between the respective two components.

Infrastructure Model. The infrastructure onto which components are to be deployed,
is modelled using a connected, undirected infrastructure graph I . It consists of a set of
hosts H and a set of network links L ⊆ H × H.

– Resource Capacities For each host h ∈ H the available capacity Sz(h) of memory
and CPU are stored, z = {mem, cpu}. The same applies to network links, each of
which holds a value Sbr(l) describing its available bitrate of each link l ∈ L.

– Cost of Resource Units As mentioned before, we use a cost-based evaluation of
resource demands to address the heterogeneity of hosts and network links in the
infrastructure. Thus, we assign the costs Wz(h), Wbr(l) for a unit of memory and
CPU power consumption, and for a required unit of bandwidth, respectively.

– Network Availability Each network link l in the infrastructure is assigned a value
0≤ a(l)≤ 1 describing the availability of that link. This measure is important for
evaluating the system’s availability of a given deployment plan later on.

A Planning Method for Component Placement 315

Assignment of Components to Hosts. For deployment planning, every component cj

is assigned to a host hi. Such an assignment is called a component placement:

cj → v(cj) = hi.

A deployment plan v : C → H is a set of component placements, such that each
component of C is assigned exactly to one host of H. On the opposite, every host can
have assigned 0..C relocatable components. The set of all deployment plans is denoted
by V and has the cardinality V = |V| = HC .

Constraints
Static Assignments. The subset of nodes CF in the composition graph are statically
assigned to hosts, i.e. these assignments are the same in all deployment plans. Static
assignments are primarily used for data sources and the data sink as they can not be
relocated. Additionally, user-defined static assignments are possible, if a component
has to be placed on a specific host.

Resource Constraints. Besides static assignments, we have the requirement that the
demand for resources does not exceed the capacity of infrastructure elements. For the
hosts this requirement implies that the resource demand does not exceed the capacity

∑

j,v(cj)=hi

Rz(cj) ≤ Sz(hi) .

Likewise it is necessary to formulate the constraint for the maximum bitrate demand
on network links. This is more complicated as the communication between any pair
of components can affect multiple network links in the infrastructure, if the two com-
ponents are deployed to hosts which are not directly connected with each other. To
formulate this constraint, we consider the communication path P between two compo-
nents ci and cj within the infrastructure at a given deployment plan v. This path is a set
of network links connecting the hosts v(ci) and v(cj) on which the components reside.

Now the constraint for the maximum bitrate demand on network link l, requires that
the sum of all communication between neighbouring components that use this network
link to be less than the capacity of this link:

∑

<i,j>

Ql(P(ci, cj)) · Rbr(d(ci, cj)) ≤ Sbr(l) .

Here, we introduced the projection:

Ql(P(ci, cj)) =

{
1 , if link l belongs to the path P ,

0 , else.

Evaluation functions. If a valid deployment plan was found, both its cost of resource
demands and its availability is evaluated. Although both measures can be used indepen-
dently for evaluating deployment plans, it may be assumed that high availability implies
high cost of resource demands.

316 J. Anke et al.

Cost of demanded resources. The cost of resource demands for a given deployment plan
v is the total cost of resource demands, cumulated over all hosts and network links.

K(v) =
H∑

i=1

∑

z

Resz(i) · Wz(i) +
L∑

j=1

Resbr(j) · Wbr(j) (1)

Here, L is the number of network links, H is the number of hosts in the infrastructure
and Resz(i) is the total demand for resource z on host i. Similarly, Resbr(j) denotes
the total bitrate demand on network link k.

Availability. For the evaluation of a deployment plan’s availability, the availabilities
a(l) of all individual network links have to be aggregated. Availabilities can be consid-
ered as probabilities of success for communication between pairs of components over
network links l. The availability of the deployment plan is determined by the product

A(v) =
L∏

l=1

a(l). (2)

We note, that the determination of the link availability a(l) is not trivial. We explain the
method we have used in section 6.2.

6 Determining Model Parameters for Smart Item Environments

To use the presented core model for deployment planning, it has to be instantiated with
actual values for the input parameters. In this section, we explain methods on how re-
source demands and the availability can be determined. As these methods are decoupled
from the core model, it allows for any other way to determine the input parameters.

6.1 Determining Resource Demands

Some resource demands depend on other inputs and have to be calculated before a
deployment plan can be evaluated. In principle, we follow an approach proposed by
Steward et al [12]. It estimates resource demand for components based on ”resource
profiles”, which are created ”off-line” by measurements under different workloads.

Load Model. To calculate component-level resource demands, except memory, the
load placed on the composition has to be known. Load refers to the number of requests
a user issues over a period of time. Generally, the requests over time are POISSON-
distributed. As our method only considers static deployment planning, the mean value
of this distribution (λ-parameter) is sufficient to characterise the load. This parameter
is named iph (invocations per hour) and does logically belong to the data sink.

Besides the number of invocations, also the message sizes to be transferred have to
be defined in the load model. As the data originates from the data sources, the message
sizes are logically assigned to them. Therefore, for each data source the size of the
message returned when it is queried has to be specified in the load model.

A Planning Method for Component Placement 317

Bitrate. Bitrate demand Rbr(d) for the communication between components depends
on the message sizes to process and the load. By multiplying the size of the message to
process with the invocation per hour iph, we get the incoming bitrate. At each invoca-
tion, the incoming data is processed into outgoing data, whereby the size of outgoing
data can be different. One approach to model this for simple functional blocks in build-
ing automation is used by Plönnigs et al. They use an amplification factor (gain) to
describe the relation of inputs to outputs in processing devices [15]. We extend this by
using a linear function oc to describe the input/output-relation for each component

IORel : oc(ic) = ec · ic + fc .

Here, oc is the output of component c, which depends on the input ic, the amplification
factor ec and the bias fc. In our model, the input ic is the sum of all incoming bitrates
for a component. Note that ec and fc are constant during the calculation.

CPU Power. The CPU demand Rcpu(c) is calculated with a method proposed by Stew-
ard et al. [12], who used it to plan component distribution in a server cluster for max-
imum throughput. They describe the CPU demand as linear function, whereby load is
the independent variable. The coefficient ac and the constant gc were gained by linear
regression on a series of CPU utilisation measurements under different loads.

Rcpu : pc(ic) = ac · ic + gc

We adopt this method and use the amount of data to be processed by the respective
component as load ic. For each component, such a linear function has to be determined
with different data amounts rather than with requests per second. A major difference be-
tween our work and the work by Steward et al is the heterogeneity in the infrastructure.
While a server cluster consists of identical machines, the CPU power in a smart item
environment is diverse. Therefore, we propose to compute the CPU demand function
on a reference system, and adjust CPU capacities on each host to reflect its CPU power
in relation to the reference system. For example, if an embedded system has only 5% of
the CPU power of the reference system, its CPU capacity is set to 5. We recognise that
this method allows only for a rough estimation of CPU demands. However, in our view
it is a good balance between model complexity and accuracy for our purpose.

6.2 Determining Availability

For the evaluation of the system’s availability (Equation (2) in section 5) the availability
of all network links in the infrastructure is needed. To characterise intermittent network
links, we introduce two parameters: (a) Mean connection duration dC , and (b) Mean
pause duration dP (see Figure 2). We present three different methods for calculating
the availability of a network link, which is understood as probability of success for:

1. Network link availability
2. Immediate successful execution of a request
3. Successful execution of a request within a given time frame

318 J. Anke et al.

1

0 t

d C d P

Fig. 2. Parameters to describe an intermittent connection

For simplicity we will denote availability as a(l) for these probabilities and the specific
context clarifies the meaning in each case.

(1) The probability of network link availability is the ratio between connection dura-
tion dC and the duration between two connection establishments (dC + dP)

a =
dC

dC + dP
(3)

(2) The probability of immediate successful execution of a request considers the time
required to transfer the requested data amount. Based on the data amount msg and the
capacity of the network link Sbr, the required transfer time dT can be determined by
dT (l) = msg

Sbr(l) . The transfer of the requested data amount is successful, if both the
connection is available and the transfer was started before the connection is terminated.

a =
dC

dC + dP
· dC − dT

dC
=

dC − dT

dC + dP
(4)

This only is meaningful if the dT < dC , otherwise the request will not be successful
and the availability of the whole system is set to 0.

(3) For the probability of successful execution of a request within a given time frame,
a maximum time dmax has to be specified. The calculation is based on probability of
the n-fold repetition of the complementary event (”transmission unsuccessful”):

a = 1 − (1 − dC − dT

dC + dP
)n , whereby n =

dmax

dC + dP
| n ≥ 1 . (5)

Multiple Uses of Links. All equations defined in this section determine the availability
of a network link for a single transmission. As every dependency in the composition
graph represents a service invocation (request) and its result (response), the network
link is used twice for each dependency mapped to it. Moreover, several dependencies
can be assigned to a network link. If a link is used multiple times, its availability is the
product of all availabilities for each individual use. For each use, the required transmis-
sion time dT might be different. Therefore, we consider the transmission time dTi for
transmission i to determine availability using Equation (4) for multiple uses by

a =
∏

i

(
dC − dTi

dC + dP

)
.

Similarly, the availability can be calculated with Equation (3) and Equation (5). In each
case, it can be seen that the availability decreases when the number of network link uses
increases.

A Planning Method for Component Placement 319

7 Analysis of the Solution Space

We validate our proposed method by analysing the results of a practical application,
which deals with maintenance planning for trucks and was adapted and extended from
an earlier publication [5]. It consists of 11 components, which are to be deployed onto
an infrastructure with 3 hosts. We show the solution space for all valid deployment plans
and identify the location of the best deployment plans in it. Furthermore, the influence
of the number of network uses on both cost and availability is analysed.

7.1 Analysis of Competition

The complete solution space for the base scenario is depicted in Figure 3.1. It shows
the cost and availability of all valid component deployment plans. The best deployment
plans (low cost and high availability) are located in the upper left corner of the diagram.
Data points representing the best deployment plans are highlighted with circles and
bounded by a rectangle, which marks the area between the two extremal points of low-
est cost and highest availability. All deployment plans which are not highlighted can be
discarded as they are definitely worse than the highlighted ones. There are 35 deploy-
ment plans which were identified as ”best”. For clarity, we name these ”deployment
plan candidates”.

Fig. 3.1 Complete solution space Fig. 3.2 Distribution of network link uses

7.2 Number of Network Link Uses

We have analysed the effect of the number of network link uses on the quality of deploy-
ment plans. As briefly discussed in section 6.2, the availability depends on how many
times a network link is used. Furthermore, the cost is also influenced by this measure
as the cost for transmission depends on how much bitrate demand from dependencies
is mapped to network links. Therefore, it can be assumed that the number of network
link uses is an important factor for the quality of a deployment plan.

To verify this hypothesis with our example, the number of network link uses is rep-
resented by the colour of data points in Figure 3.1, whereby darker points represent

320 J. Anke et al.

deployment plans with fewer link uses. As it can be seen, there is a tendency that good
deployment plans utilise network links fewer times. To further investigate this, we have
analysed the position of the best deployment plans in the distribution of link uses.

As Figure 3.2 shows, the deployment plan candidates utilise network links 10 times
or less in this example. This is an important finding, which helps to design a heuristic
search for good deployment plans in the solution space without complete evaluation of
all possible combinations.

8 A Heuristic Algorithm for Finding Deployment Plans

From our findings, we have derived a heuristic algorithm that finds good deployment
plans without scanning the whole solution space.

Heuristic Generation of Deployment Plans. As depicted in Figure 1, our method creates
a number of deployment plans for evaluation and stores the best found ones. Using the
heuristic that a low number of network uses are a characteristic of good deployment
plans, our algorithm places neighbouring components only on the same hosts or on
neighbouring hosts. Therefore each dependency of the composition model is mapped
only to either 0 or 1 network links. The recursive algorithm is initialially invoked with
the data sink as argument (see Algorithm 1).

Algorithm 1. placeDependentComp(start)
1: find host h on which start is placed
2: find all hosts Hn, which are direct neighbours of h
3: find all components Kn, on which start depends
4: for all kj in Kn do
5: randomly select host hi from (Hn ∪ h)
6: place kj on hi

7: placeDependentComp(kj)
8: end for

Evaluation. To evaluate the quality of the heuristic, we have compared it to another
method, which creates deployment plans based on random placements of components
to hosts. Both the heuristic and random assignments were used to evaluate various per-
centages of all combinatoric possible deployment plans. The quality criterion used is
the mean euclidean distance of found deployment plan candidates to the nearest plan
found by an exact algorithm, i.e. the optimum.

The results in Figure 4 show that the deployment plan candidates found by the heuris-
tic algorithm are closer to the optimum than almost all random component placements.
Furthermore, it shows that good results can achieved without evaluating a large number
of deployment plans. However, it can also be seen that the optimum is not reached. The
reason for this is that the highest availability is achieved in this scenario by placing all
components on the embedded system. This means that there is more than one network
link between the data source and the first dependent component. This is prevented by
the heuristic algorithm which only allows a maximum distance of one host between any
pair of neighbouring components.

A Planning Method for Component Placement 321

Fig. 4. Evaluation of Heuristic Accuracy

9 Conclusion and Outlook

We have presented a deployment planning method for components that addresses
specifically distributed components in smart item environments. These networks are
characterised by a high degree of heterogeneity in terms of available hardware re-
sources. The main contribution of this paper is a concept for evaluating deployment
plans both in terms of availability and cost of demanded resource. We have shown that
these two criteria compete with each other among the deployment plan candidates in the
solution space. Furthermore, we have presented a comprehensive model for component
deployment, which might serve as basis for other research questions in the domain of
smart item environments. Additionally, we have identified the number of network link
uses as a key driver for the quality of a deployment plan and derived a heuristic from
this finding. As the evaluation showed, the application of this heuristic helps to find
very good deployment plans after testing only a small fraction of all possible plans.

In the future, our work will focus on improved heuristic algorithms for creating de-
ployment plans which are likely of high quality. For that, additional characteristics of
good deployment plans, such as the average distance of components to the data sinks,
are investigated and integrated into the algorithms.

Acknowledgements

The authors would like to thank Mario Neugebauer and Eric Neuber for their valuable
comments, and Jürgen Zimmermann for his support with the implementation.

References

1. OSGi Alliance: Open Services Gateway Initiative (2006)
2. SUN Microsystems: Jini Network Technology (2006)

322 J. Anke et al.

3. Anke, J., Neugebauer, M.: Early data processing in smart item environments using mobile
services. In: Proceedings of the 12th IFAC Symposium on Information Control Problems in
Manufacturing (INCOM 06) St. Etienne, France (2006)

4. Kichkaylo, T., Karamcheti, V.: Optimal Resource-Aware Deployment Planning for
Component-Based Distributed Applications. In: Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing (HPDC’04), pp. 150–159. IEEE
Computer Society, Los Alamitos (2004)

5. Anke, J., Kabitzsch, K.: Cost-based Deployment Planning for Components in Smart Item
Environments. 11th IEEE International Conference on Emerging Technologies and Factory
Automation, Prague, Czech Republic (2006)

6. Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries, New York (1990)

7. Wegdam, M.: Dynamic reconfiguration and load distribution in component middleware. PhD
thesis, University of Twente, Enschede (2003)

8. Mikic-Rakic, M., Malek, S., Medvidovic, N.: Improving availability in large, distributed
component-based systems via redeployment. Third International Working Conference on
Component Deployment, Grenoble, France (2005)

9. Malek, S., Mikic-Rakic, M., Medvidovic, N.: A decentralized redeployment algorithm for
improving the availability of distributed systems. Third International Working Conference
on Component Deployment (2005)

10. Malek, S., Mikic-Rakic, M.: A style-aware architectural middleware for resource-
constrained, distributed systems. IEEE Trans. Softw. Eng. 31(3), 256–272 (2005)

11. Mikic-Rakic, M., Malek, S., Beckman, N., Medvidovic, N.: A tailorable environment for
assessing the quality of deployment architectures in highly distributed settings. Second In-
ternational Working Conference on Component Deployment, Edinburgh, UK (2004)

12. Stewart, C., Shen, K., Dwarkadas, S., Scott, M.L., Yin, J.: Profile-driven component place-
ment for cluster-based online services. IEEE Distributed Systems Online 5(10), 1 (2004)

13. Hoareau, D., Mahéo, Y.: Constraint-Based Deployment of Distributed Components in a
Dynamic Network. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS,
vol. 3894, pp. 450–464. Springer, Heidelberg (2006)

14. Wu, Q., Wu, Z.: Adaptive component allocation in scudware middleware for ubiquitous com-
puting. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J. (eds.) EUC 2005.
LNCS, vol. 3824, pp. 1155–1164. Springer, Heidelberg (2005)

15. Plönnigs, J., Neugebauer, M., Kabitzsch, K.: A traffic model for networked devices in the
building automation. In: Proceedings of the 5th IEEE International Workshop on Factory
Communication Systems (WFCS 2004) Vienna, Austria, pp. 137–145 (2004)

A Generic Infrastructure for Decentralised Dynamic
Loading of Platform-Specific Code

Rüdiger Kapitza1, Holger Schmidt2, Udo Bartlang3, and Franz J. Hauck2

1 Dept. of Comp. Sciences, Informatik 4, University of Erlangen-Nürnberg, Germany
rrkapitz@cs.fau.de

2 Institute of Distributed Systems, Ulm University, Germany
{holger.schmidt,franz.hauck}@uni-ulm.de
3 Siemens AG, Corporate Technology, Munich, Germany

udo.bartlang.ext@siemens.com

Abstract. Dynamic loading of code is a crucial and often neglected part
of today’s distributed systems that face increasing dynamics, complexity and
heterogeneity. Ubiquitous computing and mobile computing even strengthen this
trend. As the local availability of suitable code cannot be assumed in such
environments, we propose a generic, decentralised code loading infrastructure.
The whole process of publication, look-up, implementation selection and the final
loading of platform-specific code is decentralised and requires only basic peer-
to-peer functionality. In contrast to previous work, our infrastructure allows any
peer participating in the network to offer and to obtain platform-specific code in
a dynamic and heterogeneous environment. By building on our generic concept,
we present a JXTA-based service for dynamic code loading, which is realised
by extending and improving JXTA-built-in mechanisms for dynamic service
integration. Subsequently, we show the practical application of our infrastructure
by an integration into our CORBA middleware and an implementation of mobile
objects and mobile web services.

Keywords: CORBA, Dynamic Loading of Code, JXTA, Peer-to-Peer, Web
Services.

1 Introduction

Distributed applications of any domain face the trend of raising complexity, dynamics
and heterogeneity of software and hardware. Two prominent protagonists that empha-
sise this development are ubiquitous computing [1], targeting distributed applications
on small, mostly embedded devices, and planetary-scale execution environments for
globally available services such as PlanetLab [2] and Xenoserver [3].

In both cases, applications—especially distributed ones—have the requirement to
dynamically load additional code at run-time if that code is not already bound to
the local execution environment. There, challenges to dynamic code loading arise if
rarely used code has to be loaded on demand or if code to load is not even known in
advance. This is a common problem, as distributed applications usually have numerous
independently running application parts, which results in some code modules not being

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 323–336, 2007.
c© IFIP International Federation for Information Processing 2007

324 R. Kapitza et al.

known at compile or even at start-up time. However, it is desirable that newly developed
code can be used by already running execution environments. Additionally, for some
distributed applications it is not feasible to install and load all code modules at every
node of the system. For example, some code modules might only be used by a few
of the nodes, and these nodes may not be known in advance or may have resource
restrictions.

For addressing these problems, we recently proposed a dynamic loading service that
enables the dynamic loading of platform-specific code [4]. However, this work follows
a classical client/server-based approach relying on a central component managing
metadata of all know implementations and their variants. In contrast to that approach,
this paper proposes a generic and decentralised peer-to-peer-based lookup, selection and
loading process. This allows multiple parties to independently and non-reliably provide
implementations for a certain object or component. Building on this generic concept,
a prototype was implemented that uses existing concepts of the JXTA platform [5] to
dynamically select and load code based on metadata descriptions called advertisements.
These advertisements are extended to provide a truly platform-independent support for
the dynamic loading of platform-specific code. JXTA is used because of its flexibility:
it allows replacing routing mechanisms (e.g., unstructured replaced by structured
topology) without having to change the application, i.e. our prototype, itself.

We evaluated the proposed and implemented system by its integration as a
common CORBA service to support mobile objects, and ported this approach to a
web-service infrastructure. Then, we integrated the infrastructure into our CORBA-
compliant middleware Aspectix [6], to extend the support for fragmented objects.
Summarising the results of the use cases, the proposed infrastructure meets all demands
to dynamically select and load code for CORBA objects, web services, and fragmented
objects within heterogeneous execution environments.

In the following section, a platform-independent and decentralised approach to
dynamically discovering, selecting and loading platform-specific code is described.
Starting from this point, a brief overview of the JXTA peer-to-peer middleware and its
facilities for service lookup and integration is given in Section 3. Then, we describe
our prototype implementation of a platform-independent peer-to-peer-based loading
service. Section 5 outlines two possible use cases of our infrastructure, the integration
into the CORBA-compliant middleware Aspectix and the support for the dynamic
creation and migration of mobile objects and services. Finally, Section 6 presents related
approaches and Section 7 concludes.

2 Generic Decentralised Dynamic Loading of Code

In the following, a generic approach to dynamically loading locally unavailable and
platform-specific code is presented. As every functionality might be available in
various implementations with different requirements and properties, a generic and
decentralised selection process is responsible for identifying the best-fitting one for
a certain environment.

A Generic Infrastructure for Decentralised Dynamic Loading 325

2.1 Requirements and Properties for Implementation Selection

We identified three categories of properties and requirements that have to be fulfilled or
at least be taken into account during the selection process (cf. Figure 1).

As an interface determines how the application deals with implemented functionality
at the programming layer, new and locally unavailable functionality is identified by
its required interface. Thereby, the interface has to be defined in a generic interface
description language, e.g., using the CORBA Interface Definition Language (IDL) or
the Web Service Definition Language (WSDL).

Required Interface
Functional & Non-Functional

Properties

Implementation
Code

Compatibility Requirements

Fig. 1. An approach towards a generic code classification

Functional properties express additional functional aspects beyond the bare provi-
sion of an interface, e.g., the supported middleware platform. In general, it is hard
to standardise all kinds of functional properties. However, this is a requirement for a
generic selection process. Thus, we propose that an infrastructure for dynamic loading
should specify well-known functional properties and delegate the evaluation of other
ones to the application. Implementations providing the same functionality might also
possess non-functional properties that specify in general quality-of-service properties,
e.g., timing behavior and resource consumption of a certain implementation. In the same
way as functional properties, these are hard to be standardised in general and therefore
might have to be handled by the application.

Specific compatibility requirements for a certain implementation have to be consid-
ered as well, e.g., the required programming language and execution environment. Such
approach considers the fact that exactly the same functionality can be implemented
in various programming languages, e.g. in Java or C++, or for specific run-time
environments, e.g. Linux or Windows. Compatibility requirements can be automatically
evaluated as there is a limited set of properties (e.g., compiler, processor, operating
system), outlined in detail in our former work [4], that determine whether an
implementation is executable in the context of a requesting application.

2.2 Basic Infrastructure

For dynamic decentralised loading of code, we propose an infrastructure that is
composed of three basic components. A dynamic loader provides an interface to
the application for requesting locally unavailable functionality. This dynamic loader
component is able to discover, to select and to integrate an appropriate implementation
into the address space of the requesting application. Thereby, the searching process is
supported by a decentralised implementation repository that stores information about

326 R. Kapitza et al.

available code implementations. We favour a repository on the basis of a peer-to-
peer overlay network, which only has to provide support for keyword search (e.g.,
JXTA, Gnutella [7]). The implementation repository itself is updated by multiple
code providers, i.e., peers, that provide implementation code and publish metadata
descriptions specifying requirements and properties.

2.3 Basic Data Structure of the Implementation Repository

Using the set of properties and requirements outlined in Section 2.1 enables the
selection of the best-fitting implementation code. Therefore, all data about available
implementations is published as metadata descriptions in scope of the implementation
repository. For omitting duplicated information and improving extensibility, these
descriptions are split up into four kinds of metadata, which are each published
separately.

An interface description contains the fully-qualified name of the interface and the
interface (e.g., IDL or WSDL). Within the description, other interfaces and complex
data types are also referenced by their fully-qualified names, which enables a dynamic
lookup of unknown interfaces and data types.

For covering all interfaces and complex data types of a module, these are combined
and published in a module description. There, interfaces are only referenced by name.
The combination of module and interface descriptions allows a complete representation
of the interface description and can be used for providing a decentralised interface
repository.

An extended functional description specifies all functional and non-functional
implementation-independent properties. These are properties provided by various
implementations and therefore are used for selecting equal implementations providing
the same interface. As mentioned earlier, it is hard to identify a generic set of functional
and non-functional properties that apply to a major number of applications. Therefore,
an implementation repository and associated dynamic loaders should provide a flexible
interface that enables applications to introduce code for custom evaluation.

An implementation description describes a concrete implementation and its compat-
ibility requirements. It includes a reference to the location of the code and a description
of the initially accessed implementation element. In context of Java this would in
general be a class name of a factory.

2.4 Basic Workflow of Publication, Selection and Loading of Code

Before publishing an implementation, a code provider has to generate appropriate
metadata documents, i.e., the interface description, the extended functional description
(referencing the interface description) and the implementation description (referencing
the extended functional description and the concrete implementation). Then, these
metadata documents are published via the decentralised code repository.

When an application requires locally unavailable functionality, it passes the fully-
qualified name of the required interface and an optional handler for custom evaluation
of extended functional requirements to a dynamic loader entity. This dynamic loader
requests the implementation repository to look up the interface description and, if

A Generic Infrastructure for Decentralised Dynamic Loading 327

not available, passes an exception to the calling application. Then, the repository
is queried for extended functional descriptions supporting the requested interface.
If provided, the results are passed to the optional handler, which has to return an
ordered list of appropriate extended functional descriptions starting with the best-
fitting one. On the basis of this list, the dynamic loader queries the repository for
implementation descriptions. These are evaluated depending on a policy, e.g., the first
fulfilled implementation description is selected or all are considered and the best-fitting
one is selected. After having selected an appropriate implementation description, the
code has to be loaded.

3 JXTA and Dynamic Loading of Code

In this section we give a brief introduction to the JXTA platform and present JXTA’s
facility for dynamic loading of code.

3.1 JXTA Overview

The JXTA project was initiated by Sun Microsystems as an effort to provide a generic
and open infrastructure for peer-to-peer computing. For establishing a generic basis for
peer-to-peer applications, JXTA standardises fundamental functions by introducing six
asynchronous query/response protocols [8].

A JXTA peer-to-peer network consists of peers (uniquely identifiable nodes), which
syndicate to peer groups [9]. These peer groups permit the segmentation of the JXTA
overlay and provide a set of services which are represented through advertisements,
i.e., external programming-language-independent XML metadata representations. In
general, the availability of any network resource, e.g., peers and services, is represented
through advertisements with a unique identifier, which is published within a certain
peer group for a special lifetime [8]. Thus, peers try to discover certain resources by
searching for the corresponding advertisements.

JXTA introduces the abstraction of pipes, i.e., unidirectional, asynchronous, unre-
liable and virtual communication channels for peers within the same peer group. The
endpoints of a pipe are dynamically bound at run-time, even to different peers. JXTA
introduces two different kinds of pipes: a point-to-point pipe for unicast communication
and a propagate pipe for multicast communication.

3.2 Dynamic Lookup and Loading of Services

For structuring and dynamically extending JXTA-based applications the infrastructure
offers a generic module framework. Modules are managed by the framework and
represent distributable units of functionality within a specific peer group that can be
initialised, started and stopped by a peer. Thus, modules enable loading and integrating
new services into the JXTA platform [10].

For efficiently discovering modules, the definition of a module is divided into
three types of advertisements. As JXTA claims to be both language- and platform-
neutral, a module implementation advertisement enables the differentiation of multiple
module implementations, e.g., a module could be implemented in Java or C++. This

328 R. Kapitza et al.

advertisement specifies implementation-specific details, e.g., the actual code location.
For handling different versions of a module, module specification advertisements are
introduced, which are referenced by corresponding module implementation advertise-
ments. Additionally, a module class advertisement announces the pure existence of a
unique module class. It provides an abstraction for referring to a module that provides a
particular class of functionality (independent from a certain specification or implemen-
tation). As multiple module specification advertisements can relate to a certain module
class advertisement, references are embedded into the module class advertisement.

Recapitulating the facts, JXTA allows building a decentralised module taxonomy
to support the discovery and loading of services. However, class advertisements only
announce the availability of a general category of functionality. This gives developers
an idea for a certain module specification and supports the selection process at a very
high level, but for an automated module selection process at application level, additional
conventions have to be established. Therefore, the Java reference implementation of
JXTA makes implicit assumptions that a module implementation provides a certain
interface for starting and stopping a module, but this is neither specified by the JXTA
protocol specification nor declared by advertisements. Additionally, JXTA offers no
support for determining and specifying the interface of a module offered to higher
layers like an application. This makes it hard to provide multiple implementations
supporting the same protocol for the same platform but providing different properties.
Furthermore, module implementation advertisements should enable the providing
of compatibility information but are not standardised so far. This results in JXTA
implementations specifying their own format and parameters, which prevents the use
of module implementations in context of different JXTA implementations. Altogether,
the JXTA support for dynamic loading and integration of services leads to platform-
specific implementations and does not support dynamic loading of arbitrary code.

4 A JXTA-Based Infrastructure for Decentralised Dynamic
Loading of Code

Although JXTA’s approach for dynamic loading of code seems to be generic and
flexible, we outlined its weaknesses and shortcomings. Thus, it cannot be used as
a generic and platform-independent infrastructure for dynamic code loading. In this
section, we extend this infrastructure based on our generic concept for dynamic code
loading, which in general only relies on support for keyword search within a peer-to-
peer infrastructure (cf. Section 2).

4.1 Extended Advertisements

We extended the advertisements conforming to our specified requirements in Section
2.3 to provide an own code loading infrastructure on top of JXTA. Figure 2 shows
required advertisement types and their relations. In our approach a module class
advertisement represents the implementation interface. We define that the name field
of the advertisement specifies the fully-qualified name of the described functionality’s
most-derived interface. The advertisement’s description field is used for representing

A Generic Infrastructure for Decentralised Dynamic Loading 329

Module Class
Advertisement

Module Specification
Advertisement

Module Implementation
Advertisement

Module Implementation
Advertisement

Module Implementation
Advertisement

Fig. 2. Relations of extended advertisements

the interface description. As the name field of the class advertisement is indexed in the
JXTA network, an interface can easily be searched by its name.

The module specification advertisement is mapped to an extended functional
description, considering non-functional properties as well (e.g., code-versioning).
We consider the protocol specification as a functional property that declares if and
how a functionality is network-dependent. Additional functional and non-functional
requirements are encoded into the description field. If the specified functionality is
offered by a JXTA service, there is a pipe advertisement for addressing; otherwise the
dependent field is left open.

Finally, the module implementation advertisement is extended using standardised
compatibility requirements that we defined in previous work [4], e.g., system
parameters as the used run-time environment. These requirements are stored in the
comp field. In addition to our former work, we add platform-dependent interfaces to the
compatibility requirements. This explicitly allows to specify an integration of certain
functionality at platform level. In contrast to the Java JXTA reference implementation
that only allows loading a JAR-file from a web server specified within a puri field, we
provide extended facilities to reference and to transfer a code archive from an arbitrary
code provider. Therefore, we embed a module specification advertisement in the puri
element, enabling the specification of necessary functionality to communicate with a
certain code provider. This enables the flexible integration of arbitrary services for the
dynamic code transfer as there is no predetermined transfer protocol. A requesting peer
is able to dynamically fetch a code transfer service over the peer-to-peer network. For
instantiating the service, the main class is specified within the code element.

Such code transfer handler should either be offered via the HTTP-based code transfer
support provided by JXTA or by the implementation of the basic JXTA transfer service
that is described in Section 4.3. Thus, in general we assume at most one level of
indirection.

4.2 Decentralised Implementation Repository

Section 3.1 introduced peer groups as a mechanism for grouping users with similar
interest. In context of our prototype implementation we use a dedicated peer group
(Code Peer Group) for publishing and discovering implementations. A code provider,
which is described in the following subsection, publishes advertisements related to
offered implementations within this peer group.

330 R. Kapitza et al.

Unfortunately, JXTA binds module specification advertisements to a pipe that is
again bound to a certain peer group. The consequence is that this peer group is also used
as the group to address the services for execution. If this is not feasible, the dependent
module specification advertisements have to be discovered, modified by providing a
group-specific pipe advertisement, and finally republished in scope of the Code Peer
Group.

4.3 Code Provider

As described before, JXTA provides only restricted mechanisms for code transfer and
sharing. Therefore, we developed an own code provider service, which enables code
sharing and transfer via the JXTA network.

:JxtaCodeShareService :CodeBase

shareFile()

addFile()

getDiscoveryService()

:DiscoveryService

publish()

patchModuleImplAdvertisement()

:JxtaCodeServer

start()

new JxtaCodeServer

Fig. 3. Code sharing process (UML sequence chart)

Before publishing an implementation and its dependent code archive, associated
advertisements have to be generated, if not already available. Therefore, a local
JxtaCodeShareService object offers the core functionality to publish and to
share implementations. Thereby, a code archive together with the three advertisements
is passed to the JxtaCodeShareService via the shareFile() method.
Then, the service contacts two other objects as shown in Figure 3. First, the
JxtaCodeShareService adds its pipe advertisement for code transfer to the
module specification advertisement, then it passes the archive to the CodeBase.
This object administrates the locally offered code archives. Then, an instance of the
autonomously working class JxtaCodeServer is created, which provides a multi-
threaded server that is responsible for the file transfer via a simple JXTA-based protocol.
In the last step, advertisements are published via the standard JXTA discovery service.

4.4 Dynamic Loader

The dynamic loader builds the core of our prototype. Figure 4 illustrates the
collaboration between its important components. JxtaCodeHandler is the central

A Generic Infrastructure for Decentralised Dynamic Loading 331

:CodeBundleClassLoader

{new}

<<local>>
9: Object := loadFactory()

:JxtaCodeHandler

1: CodeBundle := getCode
 (moduleClassID, descriptionChecker)

:CodePeerGroupHandler

2: ModuleSpecAdvertisement[] := getSpecAdvertisements
 (peerGroup, attribute, value, forceRemoteDiscovery)

:DescriptionChecker

3: isCompatible(aspirant)<<local>>

4: ModuleImplAdvertisement[] := getImplAdvertisements
 (peerGroup, attribute, value, forceRemoteDiscovery)

:CompatibilityChecker

5: isCompatible(aspirant)
:JxtaCodeTransferHandler

6: File :=
 getFile(moduleImplAdvertisement)

:CodeTransferService

7: File := getFile
 (moduleImplAdvertisement)

:CodeShareService

8: shareFile
 (moduleImplAdvertisement, file)

Fig. 4. Collaboration of central system components

entity during the whole dynamic loading process. It is responsible for coordination and
finally initiates the code transfer.

The dynamic loader expects only a module class ID to determine the basic interface
and additionally the information of a module specification advertisement to determine
appropriate functionality. The module class ID can be determined by the application
using the fully-qualified name of the most derived interface of the required functionality.
The method getCode() of the JxtaCodeHandler enables searching for a certain
module specification advertisement. Therefore, it allows key identifiers as a module
class ID, name, version or a generic description within the desc element. The latter is
achieved by passing an object that implements a DescriptionChecker interface
that is able to perform a validity test for the concrete use case (1). For selecting a
specific implementation code instance, the dynamic loader uses the module class ID
for discovering corresponding module specification advertisements within the code
peer group (2). Based on the module specification advertisement and the generic
DescriptionChecker, the discovered specification advertisements can be filtered
for a suitable one (3). It might be necessary to start multiple requests to the JXTA
network if no suited specification advertisement is available yet. Based on the extracted
module specification ID, a search for corresponding implementation advertisements
can start (4). The dynamic loader compares received implementation advertisements
to requirements of the local execution environment (5): An advertisement is chosen
by using an object that implements a CompatibilityChecker interface, which
is able to validate the suitability for the current execution environment. If a suited
module implementation advertisement is found, the JxtaCodeHandler is able to
initiate the code transfer, if an appropriate transfer handler is locally available (6)
(Otherwise, a suited transfer handler has to be fetched recursively). This operation
is transparently processed by the JxtaCodeTransferHandler (7). Thereby, the
JxtaCodeTransferHandler encapsulates the whole transfer process by offering
a method getFile() that only takes a module implementation advertisement as
parameter. If the code transfer to specific provider fails, another code provider could be
chosen if available. Exemplarily, a code transfer service supporting file transfer using

332 R. Kapitza et al.

the JXTA network is realised within our prototype implementation. If the code transfer
succeeded, the code can be offered by the requesting peer for supporting the scaling of
the whole peer-to-peer system (8). Additionally, persistent caching of the code avoids
further remote transfers of identical code resulting from future requests. As a last step,
an object-specific factory is used to dynamically integrate the fetched code bundle into
the running system (9).

5 Applications of the Generic Decentralised Dynamic Loading
Infrastructure

In this section, we present two exemplary applications using our proposed loading
infrastructure: integration into a CORBA middleware to support mobile objects/services
and support for fragmented objects.

5.1 Supporting Dynamic Loading of Code for Mobile Objects and Services

Recently, we proposed a platform-independent object migration service based on the
CORBA Life-Cycle Service (LCS) [11]. The LCS specifies several interfaces for
supporting object migration. The migration process is shown in Figure 5. A migratable
object has to support the LifeCycleObject interface that includes a move()
method for initiating the migration. Within this method, a target location has to be
determined. Such location is represented by a generic factory, which enables the
creation of objects on remote machines. The selection process of an appropriate generic
factory is supported by a factory finder.

Fig. 5. Object migration based on the CORBA Life Cycle Service

For migrating an object from a source node to a target location, current state and
code have to be transferred, as local existence of arbitrary code cannot be assumed.
For transferring the state of an object, we use CORBA value types. For code provision,
we use our decentralised dynamic loading infrastructure as a CORBA service. Thus, it
can be accessed by the generic factory or any other local CORBA application. During
the initialisation phase of the ORB, the local JXTA runtime platform is configured
and connected to the peer-to-peer network, which enables the service immediately
after the ORB’s initialisation. The service interface is equal to the interface of the
Dynamic Loading Service (DLS) [4] that offers one central method getFactory()

A Generic Infrastructure for Decentralised Dynamic Loading 333

for requesting new functionality that is provided by an object implementing the factory
pattern. Additionally, our decentralised dynamic loading service offers the opportunity
to pass a custom handler for supporting the selection process. The generic factory’s
create()method for object creation expects a parameter with the required interface’s
fully-qualified name and optionally a selection handler. Thus, the generic factory is
able to request platform- and object-specific factories using the getFactory()
method offered by our service. Figure 6 outlines the core sequence of the loading
process performed by the service. First, the JxtaDynamicLoader class is invoked
for requesting a new implementation and passing a custom object for selecting an
appropriate implementation. On success, a CodeBundle reference is passed to our
custom class loader instance, which offers a method for creating and initialising a
requested object implementation, i.e., in case of the generic factory a specific factory
that is able to instantiate the demanded object.

p u b l i c O b j e c t g e t F a c t o r y (S t r i n g moduleClassID ,
D e s c r i p t i o n C h e c k e r desc) {

t r y {
CodeBundle codeBundle = Jx t aDynamicL oader . ge tCodeHandle r () .

getCode (moduleClassID , desc) ;
CodeBundleClassL oader l o a d e r = new CodeBundleClassL oader (

codeBundle) ;
} catch (NoCodeAvai l ab l e E x ce p t i on e1) { . . . }

catch (MalformedURLException e2) { . . . }
re tu rn l o a d e r . l o a d F a c t o r y () ;

}

Fig. 6. Dynamic loading of a previously unknown object within the getFactory() method

Additionally, we implemented a prototype for migrating a web service. Therefor, we
transferred the LCS concept to web services, which results in the factory finder and the
generic factory being implemented as web services. The generic factory web service
offers a create() method, to which the required web service interface is passed (as
WSDL). Based on this WSDL description, the generic factory is able to determine the
required interface and implementation. In this scenario, the factory directly interacts
with our decentralised dynamic loader infrastructure. By using the getCode()
method, a service-specific factory can be loaded and created. This service-specific
factory is able to deploy a platform-specific instance of the required web service at the
target location with setting the correct state (transferred from the original web service).

5.2 Enabling Dynamic Binding of Fragmented Objects

The Aspectix middleware provides a CORBA-compliant but more flexible and exten-
sible Object Request Broker (ORB) implementation compared to standard CORBA by
building on a modularisation of the handling of object references (IORs). A generic
reference manager uses portable profile managers, which encapsulate all tasks related

334 R. Kapitza et al.

to reference handling, i.e., reference creation, reference marshalling and unmarshalling,
external representation of references as strings, and type casting of representatives of
remote objects [6]. Currently, Aspectix provides profile managers for standard CORBA
and additionally offers support for the fragmented object model and other non-CORBA
middleware platforms, such as Jini or Java RMI.

On the one hand, a fragmented object offers a standard object interface to the
outside, on the other hand, a fragmented object can be composed of several fragments
and could be distributed with arbitrary internal architecture. This offers a high degree
of freedom and flexibity. For interaction with a fragmented object, a corresponding
local fragment has to be created that either acts as a simple stub for the fragmented
object or as a more intelligent stub that includes parts of the fragmented object’s
functionality (implicit binding). Furthermore, such infrastructure enables the exchange
of a fragment implementation at run-time and leaves the implementation of the internal
communication and structure open to the developer. Binding to a fragmented object in
general requires dynamic loading of fragment-specific code as it is not predictable if
and when a certain fragment implementation is needed. Therefore dynamic loading of
code is an essential service to support fragmented objects at their full flexibility.

We extended the fragmented-object-supporting profile manager by using the
dynamic loading service outlined in the previous section. The profile of a fragmented
object references the initial fragment implementation, either directly by specifying a
class name or indirectly by providing a code reference to the standard DLS. Depending
on a tag, either the implementation is directly loaded or one of the two code loading
services is used (standard or decentralised). In case of the decentralised loading service,
the profile includes a module class ID. This enables loading the code of a certain
fragment implementation using the JXTA-based dynamic loading infrastructure as
described in Section 4.4. After having loaded the code, the fragment implementation
has to be instantiated and initialised. As this is a fragment-specific task, every fragment
implementation has a standardised constructor that is executed by the profile manager.

The fragmented object model allows an easy integration of arbitrary internal
communication patterns. Thus, by building on our dynamic loading infrastructure, we
also created a prototype for dynamic selection, loading and integration of peer-to-
peer services into a standard-CORBA-compliant middleware [12]. Therefore, based
on the support for fragmented objects, we provide a special JXTA IOR profile that
contains a module specification advertisement, which contains the service description
and the supported protocol. This enables loading the fragment implementations, which
are actually represented by JXTA service instances, using our presented decentralised
loading service. Such fragmented objects provide a standard CORBA interface to
the outside while internally interacting in a peer-to-peer fashion. Through this, the
gap between standard client/server-based middleware and the JXTA peer-to-peer
infrastructure can be closed.

6 Related Work
In previous work [4], we presented the Dynamic Loading Service (DLS), a CORBA
service for dynamic code loading. Similarly to the realised loading service of this
work, the DLS permits to load remote code with consideration of the current run-

A Generic Infrastructure for Decentralised Dynamic Loading 335

time environment and other requirements. However, the DLS follows the client/server
paradigm and uses dedicated servers to host the program code and to offer specific
information about available code. In contrast, our current work builds on a JXTA-based
peer-to-peer-network.

Another interesting system is Java Web Start [13]. This software deployment system
uses the Java Network Launching Protocol and describes the code and the requirements
of a Java application in a special XML format. This results in applications that can be
installed over the net via a special Java Web Start client (even system-dependent native
libraries can be selected and installed). However, the format is highly Java-specific,
aims at installing and updating software and the current release lacks the support for
dependent resources and for locally executed compatibility tests.

The OSGi service platform [14] defines an open run-time environment, enabling
dynamic service integration. For the bundled representation of a service’s functionality,
the concept of an OSGi bundle is defined. A special characteristic of such a bundle is
the possibility to be dynamically added and removed from the run-time environment.
Compared to this work, a bundle offers extended possibilities, in order to specify
dependencies of other services. However, the OSGi approach misses sophisticated
mechanisms for describing, remotely discovering and selecting code portions as
outlined in this work. Furthermore, OSGi primarily targets at code loading and sharing
for the Java programming language, whereas our approach is generic and can be applied
to other programming languages as well.

Paal et al. proposed a distributed code loading infrastructure based on multiple
application repositories that can be dynamically queried by a custom application loader
[15]. In contrast to our approach, this system offers fine-grained code loading based on
class collections, which are represented by class subsets of a Java archive. However, the
system is limited to the Java programming language and application repositories have
to be preconfigured at initial deployment time for enabling code loading.

A peer-to-peer-based architecture for remote loading of Java classes is described
in [16]. This approach shows an alternative way to the standard Java class loader
mechanism and is exemplarily realised using JXTA. Compared to our solution, it lacks
flexibility to describe and to search for suitable program code. Thus, the architecture
neither permits a representation of loadable code with the JXTA concepts of module
advertisements nor offers support for a custom transfer protocol.

7 Conclusion and Future Work

We presented a generic and decentralised approach to dynamically discover, select, load
and integrate platform-specific code. According to the common peer-to-peer idea, every
peer within our infrastructure is able to load code and, additionally, to provide this code
on demand. Our prototype implementation extends and improves the mechanisms for
dynamic service integration of JXTA. However, the proposed generic concept can be
applied to any peer-to-peer infrastructure that at least supports keyword-search. For
evaluating the dynamic loading infrastructure, we presented exemplary applications.

Security issues are beyond the scope of this paper. Dynamic loading of code always
involves security considerations, and we assume that standard security mechanisms
such as code signing and a public-key infrastructure can be used for securing our

336 R. Kapitza et al.

peer-to-peer-based dynamic loading service. Additionally, JXTA enables restricted
groups, in which only authorised peers are able to participate. Thus, a general trust
between users can be achieved using such mechanism. However, our implementation
does not yet make direct use of such techniques.

Even though our prototype supports the precise selection of platform-specific code,
we currently assume that a concrete implementation is more or less self-contained.
This means, that either necessary libraries are at the target platform, as described by
the compatibility requirements, or included in the dynamically loaded code archive.
We therefore would like to provide support for implementations that reference other
interfaces or implementations that should be loaded dynamically.

References

1. Weiser, M.: The Computer for the Twenty-First Century. Scientific American, vol. 265(3)
(1991)

2. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing disruptive
technology into the Internet. SIGCOMM Comput. Commun. Rev. 33(1), 59–64 (2003)

3. Kotsovinos, E., Moreton, T., Pratt, I., Ross, R., Fraser, K., Hand, S., Harris, T.: Global-Scale
Service Deployment in the XenoServer Platform. In: 1st Works. on Real, Large Distrib.
Sys.—WORLDS’04, San Francisco, CA (December 2004)

4. Kapitza, R., Hauck, F.J.: DLS: a CORBA service for dynamic loading of code. In: OTM
Confederated Int. Conf., Sicily, Italy (2003)

5. Gong, L.: JXTA: A Network Programming Environment. IEEE Internet Computing, vol. 5(3)
(2001)

6. Hauck, F.J., Kapitza, R., Reiser, H.P., Schmied, A.I.: A Flexible and Extensible Object
Middleware: CORBA and beyond. In: 5th Int. Works. on Softw. Eng. and Middlew. ACM
Digital Library (2005)

7. Klingberg, T., Manfredi, R.: Gnutella 0.6. Technical report (2002)
8. The Internet Society. Jxta v2.0 protocols specification. Technical report, Sun Microsystems

(2001)
9. Sun Microsystems. Jxta v2.3.x: Java programmer’s guide. Technical report (2005)

10. Wilson, B.J.: JXTA. New Riders (2002)
11. Kapitza, R., Schmidt, H., Hauck, F.J.: Platform-Independent Object Migration in CORBA.

In: OTM Confederated Int. Conf. LNCS, vol. 3760, pp. 900–917. Springer, Heidelberg (2005)
12. Kapitza, R., Bartlang, U., Schmidt, H., Hauck, F.J.: Dynamic integration of peer-to-

peer services into a CORBA-compliant middleware. In: OTM 2006 Workshops, Springer,
Heidelberg (2006)

13. Sun Microsystems. Java Web Start Overview. White paper (2005)
14. The OSGi Alliance. OSGi service platform: Core specification, release 4. Technical report

(2005)
15. Paal, S., Kammüller, R., Freisleben, B.: Dynamic Software Deployment with Distributed

Application Repositories. In: 14. Fachtagung Kommunikation in Verteilten Systemen
(KiVS), Springer, Heidelberg (2005)

16. Parker, D., Cleary, D.: A p2p approach to classloading in java. In: 2nd Int. Works. on Agents
and P2P Comp.—AP2PC’03 (2003)

Author Index

Aagedal, Jan Øyvind 76, 296
Agha, Gul 239
Alia, Mourad 104
Almeida, João Paulo A. 32
Anke, Jürgen 309

Barbier, Franck 48
Bardram, Jakob E. 119
Bartlang, Udo 323
Ben Jemaa, Maher 153
Bruel, Jean-Michel 48

Ca�la, Jacek 139
Chang, Po-Hao 239
Chen, Junliang 284
Chimaris, Avraam 225
Conan, Denis 210
Costanza, Pascal 1

Dargie, Waltenegus 17
De Win, Bart 253
Dehlen, Vegard 296
Desmet, Brecht 1
Dockhorn Costa, Patŕıcia 32

Ebraert, Peter 1
Eisenbach, Susan 90
Eliassen, Frank 76, 104

Ferreira Pires, Lúıs 32
France, Robert 76

Garruzzo, Salvatore 181
Goovaerts, Tom 253

Hackenbroich, Gregor 309
Hallsteinsen, Svein 104
Hauck, Franz J. 167, 323

Jmaiel, Mohamed 153
Joosen, Wouter 253, 267

Kabitzsch, Klaus 309
Kapitza, Rüdiger 167, 323
Kutvonen, Lea 62

Li, Fei 133
Lundesgaard, Sten A. 76

Marzouk, Soumaya 153
Mogensen, Martin 119
Mostinckx, Stijn 1

Nurmela, Tuomas 62

Oldevik, Jon 76

Papadopoulos, George A. 225
Paspallis, Nearchos 104, 225

Reiser, Hans P. 167
Romeo, Fabien 48
Rosaci, Domenico 181
Rouvoy, Romain 210

Sadler, Chris 90
Sanen, Frans 267
Sarné, Giuseppe M.L. 181
Schmidt, Holger 323
Seinturier, Lionel 210
Shuang, Kai 133
Solberg, Arnor 76
Song, Jingyu 195
Springer, Thomas 17
Su, Sen 133, 284

Truyen, Eddy 267

Vallejos, Jorge 1
Van Cutsem, Tom 1
van Sinderen, Marten 32

Wan, Shuchao 195
Wei, Jun 195
Wolf, Bernhard 309
Wong, Dominic 90

Yang, Fangchun 133

Zeman, Thomas 167
Zhang, Chengwen 284

	Title
	Preface
	Conference Committees and Organization
	Table of Contents
	The Context-Dependent Role Model
	Introduction
	Context-Dependent Adaptations in Mobile Distributed Systems
	Context-Dependent Adaptations
	Distribution Conditions for Context-Dependent Adaptations

	The Context-Dependent Role (CDR) Model
	Flexible Composition of Behavioural Adaptations
	Dynamic Adaptation Based on Roles
	Context-Dependent Role Selection
	Delimited Scope of Adaptations
	Context Selection

	Discussion and Future Work
	Related Work
	Conclusion

	Integrating Facts and Beliefs to Model and Reason About Context
	Introduction
	Aspects of Context Computing
	Related Work
	A Guideline for Modelling Everyday Situations
	Scenario
	Determination of the Context of Interest
	Identification of Aspects of a Context
	Determination of Factual and Probabilistic States
	Determination of Logical and Probabilistic Relationships

	Validation
	Discussion and Conclusion

	Situation Specification and Realization in Rule-Based Context-Aware Applications
	Introduction
	Context Models
	Situation Models
	Situations Involving Intrinsic Context
	Situations Involving Relational Context
	Situation of Situations

	Rule-Based Implementation
	Distribution Issues
	Related Work
	Conclusions
	References

	Observability and Controllability of Wireless Software Components
	Introduction
	Internal Management of Components
	Internal Managers and Business Components
	Behavior Model Facilitating the Management of Components

	External Management of Components
	Monitoring
	Control

	Management of Compositions
	Behavior Composition
	A Management Policy to Ensure Rigorous Behavior Composition

	Implementation
	Wireless Software Components
	Wireless Management Communication and Remote Management System

	Performance Issues
	Conclusion
	References

	Service Level Agreement Management in Federated Virtual Organizations
	Introduction
	Service Level Management
	SLA Languages and SLM Architectures
	SLAng
	Web Services Level Agreement
	Web Services Offerings Language
	Summary

	Conclusions
	References

	Construction and Execution of Adaptable Applications Using an Aspect-Oriented and Model Driven Approach
	Introduction
	Construction and Execution of Adaptable Applications
	The Conceptual Service Model
	Constructing Application Variants
	Execution of Adaptable Applications

	Illustrative Example
	Modeling and Mapping
	QoS-Aware Planning and Adaptation

	Related Work
	Conclusion and Future Work
	References

	Component Adaptation in Contemporary Execution Environments
	Introduction
	Dynamic Linking
	Flexible Dynamic Linking
	The Common Language Infrastructure
	Definition

	FLAME
	FLAME Runtime
	FLAMEConfig
	Case Study: xmlValid

	Related and Future Work
	References

	Managing Distributed Adaptation of Mobile Applications
	Introduction
	Motivating Example: On-Site Worker Application
	Distribution Adaptation Management
	MADAM Adaptive Element Architecture
	Adaptation Approach: Property-Driven Variability
	Example Revisited

	Resource Management Framework
	Distributed Infrastructure Resource Model
	Distributed Resource Management Architecture

	Distribution Adaptation Reasoning
	Implementation Status
	 Discussion and Related Work
	Conclusion

	DOLCLAN – Middleware Support for Peer-to-Peer Distributed Shared Objects
	Introduction
	Related Work

	Peer-to-Peer Distributed Object Sharing
	An Example

	Infrastructure Support
	System and Network Architecture
	Peer Architecture

	Implementation and Evaluation
	Performance
	Utility

	Conclusions

	Peer-to-Peer Based QoS Registry Architecture for Web Services
	Introduction
	System Model
	Information Dissemination
	QoS Update
	Load Update

	Replication and Load Sharing
	Conclusion and Future Works
	References

	Migration in CORBA Component Model
	Introduction
	Related Work
	Migration Mechanism
	Mobility with CORBA Component Model
	External Interface
	Factory Involvement in Component Migration
	Extended Component Lifecycle

	Migration Internals
	Dealing with Requests on Suspension
	Constraints on Resource Usage
	Reconnection

	Evaluation of Efficiency
	Conclusions and Future Work

	A Serialisation Based Approach for Processes Strong Mobility
	Introduction
	Related Work
	Transformation Approach
	Capturing and Reestablishing Process State
	Code Transformation

	Performance Evaluation
	Conclusion

	Parallel State Transfer in Object Replication Systems
	Introduction
	Background and Related Work
	Basic Approaches to State Transfer
	Parallel Transfer

	Decentralised State-Transfer Algorithms
	Terminology
	Parallel Transfer: Static Equal
	Parallel Transfer: Static Unequal
	Parallel Transfer: Dynamic
	Partial State Capturing

	Experimental Evaluation
	Implementation Overview
	State Transfer in a Homogeneous LAN Environment
	State Transfer in a Heterogeneous WAN Environment
	Non-blocking State Transfer

	Conclusions

	MARS: An Agent-Based Recommender System for the Semantic Web
	Introduction
	MARS Architecture
	The Device Agent
	The Profile Agent
	The Recommender Agent and the Site Agent

	Related Work
	Experiments
	Description of the Experiments

	Conclusions

	An HTML Fragments Based Approach for Portlet Interoperability
	Introduction
	Related Works
	Problem Statement and Analysis
	A Scenario
	Achieving Interoperability at Different Layers of a Portlet

	Reference Model for Portlet Presentation Layer
	Portlet Interoperation Model
	ShadowComponent
	Operation Primitives
	ECA Rules

	Implementation
	Constructing ShadowComponents
	InteroperationFilter
	Interoperation Process
	A Practical Example

	Conclusion
	References

	Scalable Processing of Context Information with COSMOS
	Introduction
	Overview and Motivations
	Building Context Management Policies from Context Nodes
	Concept of Context Node
	Properties of a Context Node
	Architecture of a Context Node
	Architecture of COSMOS

	Case Study
	Caching/Off-Loading Scenario
	Implementation with COSMOS Context Nodes

	Implementation of COSMOS
	Performance Evaluation of the Prototype
	Related Work
	Conclusion

	Experiences from Developing a Distributed Context Management System for Enabling Adaptivity
	Introduction
	Context Awareness
	Requirements for Distributed Context Management
	General Requirements
	Requirements for the Distribution of Context

	The Architecture of the Context Management System
	Context Management in Centralized Environments
	Membership and Distributed Context Management
	Implementing the Architecture

	Experiences from the Development of the Context System
	Related Work and Conclusions
	References

	Towards Context-Aware Web Applications
	Introduction
	Overview
	The Need for Context-Aware Web Applications
	Problem Analysis and Related Work
	Design Strategies

	Customizable Web Applications
	Component Annotation
	Selection by Genealogy
	Discussion

	Structured Deployment Plans
	Moving to XML
	Parameterized Specification Blocks
	Partial Plans

	Context Management
	Context Features
	Policy Design

	Conclusion

	A Flexible Architecture for Enforcing and Composing Policies in a Service-Oriented Environment
	Introduction
	Motivating Example
	Requirements
	Architecture
	Architectural Design
	Enforcement of Example Policies
	Prototype

	Evaluation and Discussion
	Related Work
	Conclusion

	Managing Concern Interactions in Middleware
	Introduction
	Background and Motivation
	Background
	Motivation

	Conceptual Model
	Overview

	CIA Expert System
	Overview
	Ontology-Based Representation of Concern Interaction Knowledge
	Reasoning
	Our Example Revisited

	Related Work
	Interaction Modeling
	Interaction Detection and Resolution

	Conclusion

	An Improved Genetic Algorithm for Web Services Selection
	Introduction
	Quality Computation-Based Selection of Web Services
	Improved Genetic Algorithm
	Relation Matrix Coding Scheme
	Fitness Function
	Mutation Policy

	Experiments
	Experiments on Fitness Function
	Experiments on Mutation Policy

	Conclusions
	References

	A UML Profile for Modeling Mobile Information Systems
	Introduction
	Problem Analysis
	Theory of Mobility
	Types of Mobility

	Requirements for the Modeling Framework
	Proposed Solution
	Mobility Metamodel
	UML Profile for Modeling Mobility

	Validation
	Case Study
	Related Work

	Conclusions and Future Work
	References

	A Planning Method for Component Placement in Smart Item Environments Using Heuristic Search
	Introduction
	Problem Analysis
	Related Work
	Proposed Solution
	Core Model of the CPP
	Determining Model Parameters for Smart Item Environments
	Determining Resource Demands
	Determining Availability

	Analysis of the Solution Space
	Analysis of Competition
	Number of Network Link Uses

	A Heuristic Algorithm for Finding Deployment Plans
	Conclusion and Outlook

	A Generic Infrastructure for Decentralised Dynamic Loading of Platform-Specific Code
	Introduction
	 Generic Decentralised Dynamic Loading of Code
	Requirements and Properties for Implementation Selection
	Basic Infrastructure
	Basic Data Structure of the Implementation Repository
	Basic Workflow of Publication, Selection and Loading of Code

	 JXTA and Dynamic Loading of Code
	 JXTA Overview
	Dynamic Lookup and Loading of Services

	A JXTA-Based Infrastructure for Decentralised Dynamic Loading of Code
	Extended Advertisements
	Decentralised Implementation Repository
	 Code Provider
	 Dynamic Loader

	Applications of the Generic Decentralised Dynamic Loading Infrastructure
	 Supporting Dynamic Loading of Code for Mobile Objects and Services
	 Enabling Dynamic Binding of Fragmented Objects

	 Related Work
	 Conclusion and Future Work

	Author Index

